
11th HSTAM International Congress on Mechanics
Athens, 27 – 30 May, 2016, Greece

COMPARISON OF METAHEURISTIC ALGORITHMS
FOR SIZE OPTIMIZATION OF TRUSSES

Aristotelis E. Charalampakis1

1Department of Civil Engineering
Gediz University

Izmir, 35665, Turkey
e-mail: aristotelis.charalampakis@gediz.edu.tr, web page: www.charalampakis.com

Keywords: Truss size optimization, GA, PSO, DE, SA, ABC.

Abstract. Metaheuristic algorithms have emerged as the best way of solving complex optimization problems.
Consequently, the literature includes a large and growing number of applications of metaheuristics for the size
optimization of trusses. Generally speaking, these studies do not focus in the comparison between algorithms.
Motivated by this, we present a framework for an unbiased and meaningful comparison between different
metaheuristic methods. Based on this framework, a critical evaluation of a number of metaheuristic algorithms
is presented, which includes Genetic Algorithms, Particle Swarm Optimization, Artificial Bee Colony, Simulated
Annealing and Differential Evolution variants. The differences in performance are highlighted and an
explanation for their behavior is attempted. It is found that Differential Evolution is the best optimizer in terms
of performance, robustness and scalability. We also demonstrate that, although the methods considered in this
study are well-established, often better designs than the ones found in the literature are discovered.

1 INTRODUCTION

Structural optimization has always been a topic of great interest among engineers. In most real-life
optimization problems, featuring multimodality and non-convex feasible regions, the use of simple gradient
methods is problematic. This led to mathematical programming (MP) and optimality criteria (OC) methods,
which have been used extensively in the past [1]. In MP, direct minimization is attempted e.g. using
decomposition into a sequence of linear programming problems. The use of approximations readily produces
good designs which, however, are not necessarily globally optimal. In OC methods, assumptions on the
conditions in the optimum state (e.g. “fully stressed design”) provide simple recursion formulas for redesign.
Obviously, these methods do not solve the problem in a proper mathematical manner and may not converge for
highly redundant structures [1].

Nowadays, metaheuristic algorithms have emerged as the best way for solving complex optimization
problems. These algorithms are usually inspired by evolution, swarm intelligence or physical phenomena
principles and their widespread use is justified by a number of important advantages such as easy
implementation, lack of dependency on gradient or other problem-specific information and good performance
with global search characteristics [2]. Consequently, the literature includes a large and growing number of
applications of metaheuristics for optimization of trusses. Examples include Genetic Algorithms (GAs) [3], [4],
Simulated Annealing (SA) [5], Harmony Search (HS) [6]-[8], Artificial Bee Colony (ABC) [9], Particle Swarm
Optimization (PSO) [10]-[14], Teaching-Learning Based Optimization (TLBO) [15]-[16], Big Bang – Big
Crunch (BB-BC) [17]-[18], Colliding Bodies Optimization algorithm (CBO) [19], Enhanced Bat Algorithm
(EBA) [20], Charged System Search (CSS) [21], Differential Evolution [22]-[23], Hybrid Particle Swarm -
Swallow Swarm (HPSSO) [24], Hybrid Particle Swarm - Ant Colony Strategy - Harmony Search (HPSACO)
[25], Chaotic Swarming of Particles (CSP) [26], to name a few.

Generally speaking, studies on truss size optimization do not focus in the comparison between algorithms.
Usually, only the best final design is compared which may have been found using an excessive computational
budget or, in certain cases, with constraint violations. Thus, a need for an overall and unbiased comparison is
evident. Motivated by this, a framework for an unbiased and meaningful comparison between different
metaheuristic methods is presented. Based on this framework, we perform a comparison of a number of
metaheuristic algorithms which includes Genetic Algorithms, Particle Swarm Optimization, Artificial Bee
Colony, Simulated Annealing and Differential Evolution variants. The comparison is based on several
benchmark problems of varying complexity which have been studied by numerous researchers using a large
variety of methods; this allows for absolute rather than relative comparison. The differences in performance are
highlighted and an explanation for their behavior is attempted. It is also shown that, although the methods
considered in this study are well-established, often better designs than the ones found in the literature are

Aristotelis E. Charalampakis.

produced.

2 STATEMENT OF THE OPTIMIZATION PROBLEM

In this study, the weight minimization problem of a truss structure with D sizing variables is formally stated
as follows.

Minimize:

     f W P x x x (1)

with    
1

D

i i i
i

W L x 


 x structural weight and  P x penalty function,

subject to:

side constraints L U x x x (vector inequalities apply element-wise);

additional constraints on element stresses, buckling stresses and nodal displacements,
depending on problem definition.

In the above formulation,  1 2, ,..., Dx x x x vector containing the cross-sectional area of each group of

elements, Lx and U x vectors defining the minimum and maximum allowable areas, respectively, iL and i 

total length and specific weight of the i -th group of bars.
Ideally, the penalty should be kept as low as possible, just above the limit below which infeasible solutions

are optimal [27]. There are many types of penalty functions; for a survey on the state-of-the-art, see Ref. [27]. In
this study we use a static penalty rule with a small constant term to keep all best solutions strictly within the
feasible domain, i.e. we do not accept any violation at all. A normalized constraint violation function is defined
as follows:

 1
j

j o
n j

a

v
v

v
  , (2)

where, j
nv is the normalized violation of the j -th optimization constraint (stress, displacement, buckling

stress, etc), j
ov is the corresponding value computed for a candidate solution, and j

av is the allowable constraint

limit. The penalty function takes the form:

    
1

cN
j j

n
j

P Av B


 x , (3)

where, 610A  , 310B  , cN  number of constraints and j  activation key defined as:

1, 0

0, 0

j
j n

j
n

v

v


 
 


. (4)

The constant term B is added when even the slightest violation occurs. This has proved to be very effective
in keeping the best solutions free of penalties, without the need to compare both the feasibility of candidate
designs and their objective value.

3 METAHEURISTIC ALGORITHMS

3.1 Basic features of the trade study

The following assumptions/rules have been used equally for all algorithms:
1. The number of structural analyses required in the optimization process was chosen as the best

performance indicator to compare algorithms of different nature and configuration.
2. Thirty independent runs with different random seeds were carried out for each test case and each

optimization algorithm in order to obtain statistically significant results.
3. A long period random number generator of L’Ecuyer with Bays-Durham shuffle and added safeguards

[28] was used. Henceforth, r  random variable with uniform distribution in the interval (0,1), sampled
anew each time it is required, and r corresponding vector.

4. For each test problem, a value-to-reach (VTR) defines the limit between success and failure. The VTR is
1% heavier than the best feasible design obtained in this study or reported in literature. Hence
“successful” designs lie very close to the optimum region of design space. The final design is usually

Aristotelis E. Charalampakis.

more fine-tuned when the VTR threshold is reached early in the optimization process.
5. In this study the computational budget is set to 2500D structural analyses and the best design is

achieved strictly within this limit. This budget balances two conflicting aspects: (a) it is high enough to
achieve good designs (often better than those reported in literature); (b) it is not too excessive so as to
conflict with limitations on computing resources.

6. Cross-sectional areas of elements are rounded to three decimal digits before performing structural
analysis in double precision without any further rounding. Literature designs including more than three
decimal digits are exactly reproduced in this paper; however, the total weight is re-evaluated and may be
slightly different from the source value. The inversion of the stiffness matrix is performed using Gauss-
Jordan elimination with full pivoting [28].

3.2 Standard Genetic Algorithm (SGA)

Genetic Algorithms (GAs) are evolutionary algorithms that originated from the work of Holland [29] and
have been employed in virtually any problem imaginable. The so-called standard genetic algorithm (SGA) can
be described by the following pseudocode:

1. Initialize the population of individuals (chromosomes);
2. Calculate the fitness of each individual in the population;
3. Select individuals to form a new population according to each one’s fitness;
4. Perform crossover and mutation to form a new population;
5. Repeat steps (2–5) until some condition is satisfied.

The parameters of SGA are set as follows: gene length gL = depending on the problem, so that the

phenotypic step is less than 10-3; population size P =50; single crossover with crossover probability 0.7; jump

mutation probability 1 P ; creep mutation probability cL D P (cL  chromosome length in bits); tournament

selection with 2 individuals; and elitism with 1 individual.

3.3 Hybrid Genetic Algorithm (HGA)

The standard GA formulation is hybridized by combining the search space reduction method (SSRM) and a
local optimization algorithm to form the Hybrid Genetic Algorithm (HGA). SSRM is a systematic method which
gradually reduces the search space. It facilitates the optimization algorithm by focusing into the promising areas
which leads to better solutions. The SSRM embedded in HGA was presented in [30] and later employed in
several cases, e.g. [31]. It is based on statistical analysis of a population of P candidate designs, where each one
is assigned a weight w depending on its quality. For minimization problems:

 

 
max

, 1,2,...,k

k

f
w k P

f
  , (5)

where    1 2max max , ,..., Pf f f f is the objective value of the worst design in the population, which is

assigned a weight of unity. The weighted mean value of design variable i is then calculated as:

 

 
 1

1

, 1,2,...,

P

k ik
k

i P

k
k

w x

m i D

w





 



, (6)

where ikx is the value of the i -th variable of the k -th candidate design. The descriptive weighted standard

deviation of design variable i is given as:

  

 

2

1

1

P

k ik i
k

i P

k
k

w x m

s

w











. (7)

The new trial lower and upper bounds of design variable i are formed symmetrically around im :

,

,

i
L j i i

i
U j i i

x m q s

x m q s

 

 
, (8)

where j is an index for SSRM steps and q is a scalar parameter. Finally, the new range of values of design

variable i is the intersection (common part) of the previous range and the trial range:

Aristotelis E. Charalampakis.

 , 1 , 1 , , , ,, , ,i i i i i i
L j U j L j U j L j U jx x x x x x 

            , (9)

Based on Eq. (9), the search space is not allowed to expand. Instead, it is gradually reduced on a variable-by-
variable basis, if justified by the statistical analysis. The scalar q controls the aggressiveness of SSRM. Small
values may stochastically lead to exclusion of a promising area in subsequent SSRM steps; large values cancel
the beneficial effect of SSRM. In this study, q = 3 is set which is a rather conservative choice [30]. The
chromosomes of the existing population are substituted by their closest counterpart in the new mapping. If a
variable falls out of a new bound, it is set equal to it.

Regarding variable discretization, the gene length is set to 10 bits irrespective of the problem at hand. This
leads to a relatively small chromosome length, which greatly facilitates the GA. Refining of the solutions is
achieved through SSRM, which is triggered automatically. For the test problems considered in this study, this
happens every 10000 function evaluations.

A local optimization algorithm, namely the Greedy Descend Hill Climber (GDHC [2]), is also embedded in
the HGA. The final 5000 function evaluations of each run are dedicated to GDHC. The best solution found so far
becomes seed; this solution is continuously improved by flipping the bits of the chromosome from left to right,
keeping the best result as a reference. When a full cycle of bit flips has been concluded without improvement the
local optimum has been found [2] and the process is terminated. If the limit of 5000 function evaluations is
reached prior to finding the local optimum, the reference solution becomes final.

3.4 Enhanced Particle Swarm Optimization (EPSO)

Particle Swarm Optimization (PSO) is based on the social sharing of information among members, which
produces behavioral patterns that offer an evolutionary advantage (avoid predators, seek food and mates). The
method, introduced by Kennedy and Eberhart [32], searches the design space by adjusting the trajectories of
individuals called “particles”. The particles are attracted towards the positions of both their personal best
solution and the best solution of the whole population (the “swarm”) in a stochastic manner. In the basic PSO
algorithm, we assume that the population consists of P particles. Each particle is characterized by its position
and velocity, determined at time instant k by the corresponding vectors kx and kv . Initially, the particles are
distributed randomly in the box-constrained design space, so that:

  0 1,2,...,m
L U m P   x x x . (10)

The initial velocities of the particles are also chosen randomly:

  max max
0 0 0 1,2,...,m m P    v v v , (11)

where  max
0 U L v x x and   a scalar parameter. The position vector of particle m at the next time

instant 1k  is given as:

 1 1
m m m
k k k  x x v , (12)

where the time step t between the distinct time instants is assumed to be equal to unity. The velocity vector

1
m
kv is given as:

 1 1 1 2 2() ()m m m m g m
k k k k k k kw c c     v v r p x r p x  , (13)

where, kw  inertia factor at time instant k ; 1c , 2c  cognitive and social parameters, respectively; m
k p

best ever position vector of particle m up to and including time instant k ; g
k p best ever position vector

amongst all particles up to and including time instant k ; and the  operator indicates element-by-element
multiplication. The side constraints of Eqs. (10) and (11) are enforced after each time step.

It is known that standard PSO suffers from convergence rate problems, due to the delicate balance between
exploration and exploitation that is required. This was evident in the problems considered in this study, so an
enhanced variant is used instead. This variant (EPSO) is based on the work of Fourie and Groenwold [12] and
has been successfully applied in a parameter identification problem [33]-[35]. The differences with respect to the
basic PSO algorithm are the following:
o If the best solution found in the whole swarm is not improved over a period of h consecutive steps, then it is

assumed that the velocities are large and the algorithm cannot locate better solutions due to overshooting.
For this reason, both the inertia factor and the maximum velocity are reduced as follows:

 1 1

max max max max
1 1

If () () then else

k k k kg g

k k h

k k k k

w a w w w
f f


 



 

  
  

  
p p

v v v v
. (14)

o The craziness operator assigns a random velocity vector to a particle which hence moves away from the
swarm and explores other regions of the search space. The operator is activated with a probability Pcr as
follows:

Aristotelis E. Charalampakis.

 max max
1 1 1 1If then randomly assign with -m m

cr k k k kr P      v v v v . (15)

o The individual with the worst performance is moved to the best ever position of the swarm.

o If the velocity vector m
kv resulted in an improvement of g

kp then, instead of Eq. (12), the following rule

(“elite velocity”) is used for particle m :

 1 3 3 m g m
k k kc  x p r v , (16)

where, 3c  a scalar parameter. This is a difference between the present implementation and Ref. [12],

where a single random variable 3r is used to multiply the whole velocity vector m
kv .

In this study, the parameters of EPSO are set as follows: 20P  , 1 0.5c  , 2 1.6c  , 0.4  , 0 1.40w  ,

3h  , 0.99a  , 0.95  , 0.22crP  , and 3 1.30c  .

3.5 Artificial Bee Colony (ABC)

In the category of Swarm Intelligence algorithms, Karaboga and Basturk [36] proposed the Artificial Bee
Colony (ABC) algorithm, a stochastic algorithm inspired by the foraging behaviour of honey bees. In ABC, the
colony of artificial bees is divided into two equal groups, i.e. the employed bees and the onlookers. The number
of employed bees is equal to the number of food sources (possible solutions) around the hive. Initially, the ABC
generates a random initial distribution of SN/2 food source positions, where SN = total colony size. Next, the
food source positions are subjected to repeated cycles of improvement. The employed bee i produces a
modification on the position vector of the associated food source i :

   2 1ij ij ij kjx x r x x    , (17)

where,  , 1,2,..., 2i k SN  random indices with i k and  1, 2,...,j D  a randomly chosen dimension of

the D -dimensional vector ix to be modified. A greedy selection is performed between the current and modified

vector; the best either becomes, or remains, the food source i . Next, the employed bees share the nectar

information with the onlooker bees on the dance area. An onlooker bee chooses each food source with a

probability given by:

2

1

i
i SN

k
k

fit
p

fit





, (18)

where, ifit  fitness of food source i . For minimization problems, this can be evaluated by:

1

1
i

i

fit
f




, (19)

where, if  objective value of food source i . The onlooker bee also produces a modification on the selected

food source according to Eq. (17) and applies a greedy selection criterion between the current and modified
vector. Finally, if a food source is not improved over a period of LIMIT cycles, then the associated employed
bee becomes scout. This means that the food source is re-initialized as:

  L U L  x x r x x . (20)

In this study, the parameters of ABC algorithm are set as follows: 50SN  and 2LIMIT SN D  .

3.6 Differential Evolution (DE)

Differential Evolution (DE) is a stochastic optimization method which was introduced by Storn and Price
[37]. It has no natural paradigm and is usually applied to problems with continuous design variables. An early
version of DE was initially conceived under the term “Genetic Annealing” and published in a programmer’s
magazine [38]. The DE algorithm is extremely simple; the uncondensed C-style pseudocode of the algorithm
spans less than 25 lines [38]. In classic DE, a population of P individuals is randomly dispersed within the
design space, as follows:

 

     

   

,0

, , max

, , ,

 1,2,...,

, 1,2,..., , 0,1,...,

, 1, 2,..., .

L i U

g i g

i g j i g

i P

i P g g

x j D

   

  

 

x

x x x

P x

x

, (21)

Aristotelis E. Charalampakis.

where ,gxP = array of P vectors (solutions); ,i gx = D -dimensional vector representing a candidate solution;

maxg = maximum number of generations; i = index for vectors, g = index for generations, j = index for design

variables; and the parentheses indicate an array. At each generation g , a mutated population  , ,g i gvP v is

formed based on the current population ,gxP , as follows:

  , 0, 1, 2,i g r g r g r gF  v x x x , (22)

where, 0r , 1r and 2r are mutually exclusive random integers in  1,2,..., P , which are also different from index

i ; 0,r g x base vector; and F  a scalar parameter. After using Eq. (22), design variables are reset to their

respective bounds in case a mutated solution moves out of the initial design space. Next, a trial population

 , ,g i guP u is formed, consisting of individuals created from the parent and mutated populations, as follows:

  
 , ,

, , ,

, ,

, if or

, otherwise
j i g r rand

i g j i g

j i g

v r C j j
u

x

 
  


u , (23)

where, randj  a random index in  1,2,..., P that ensures that at least one design variable will originate from the

mutant vector ,i gv ; and rC  a scalar parameter in the range [0,1]. The final step of the algorithm is a greedy

selection criterion, which for minimization problems is expressed as:

   , , ,

, 1

,

, if

, otherwise

i g i g i g

i g

i g

f f


 
 



u u x
x

x
. (24)

The above-described classic DE implementation is denoted as rand/1/bin [38], or DE1 herein for short. DE1
usually demonstrates stronger exploration capability and thus is more suitable for solving multimodal problems

[39]. Following recommendations in [38], 0.5F  while a high value of 0.9rC  is expected to perform well

with non-separable functions. The population size is set as 50P  for all problems.
Another popular DE variant is denoted as best/1/bin [38] in which the currently best vector of the population is
used as base vector. In addition, jitter is introduced to F and, thus, Eq. (22) becomes:

 

 
, , 1, 2,

0.5

i g best g j r g r g

j

F

F F d r

  

  

v x x x
, (25)

where 0.001d   magnitude of jitter [38]. This variant was tested in this study and found to be too greedy,
as it showed great initial performance which was quickly followed by stagnation in the more difficult problems.
Instead, another DE variant is included which is denoted as DE3 or “rand-best/1/bin” [34], [35]. Let us define rb
as the expected ratio of evaluations with a random base vector to the total number of evaluations. If r<rb, then
evolution proceeds according to rand/1/bin with jitter. Conversely, best/1/bin is used. Based on information
presented in a separate section, a high value of rb = 0.90 is chosen in order to promote exploration.

Since its inception, DE has proved to be very efficient for many optimization problems. However, its
performance is dependent on the choice of both the strategy for the generation of trial vectors and the values of
control parameters. Although there exist suggestions for parameter settings, there is no fixed parameter setting
that is equally suitable for various problems or even at different evolution stages of a single problem. For this
purpose, several adaptive algorithms have been proposed, such as SaDE [39], JADE [40] and SaNSDE [41]. In
this study we consider SaDE [39] as the final DE variant, in which four competing strategies are utilized
simultaneously, namely rand/1/bin, rand-to-best/2/bin, rand/2/bin and current-to-rand/1, with K = 4 = total
number of strategies. For the implementation details, see Ref. [39].

3.7 Simulated Annealing (SA)

Simulated Annealing (SA) is inspired by the annealing process of physical systems which, being at a high-
energy state, are gradually cooled down until their minimum energy level is reached. The idea that this process
can be formulated into an optimization algorithm was first put forth by Kirkpatrick et al. [42]. The
implementation of the SA algorithm used in this study, outlined below, is based on the work of Balling [43]. The

algorithm begins with the creation of D random designs in the box-constrained design space L U x x x . The

best of these designs becomes the current design cx . This preliminary loop is done in order to avoid the

possibility that the starting point for the optimization is too poor. Following the selection of an appropriate

cooling schedule, the current design cx is subjected to small perturbations to create a candidate design ax .

Aristotelis E. Charalampakis.

Whenever ax is better than cx , it replaces it with probability of 1. For a minimization problem, this is expressed

mathematically as:

      0 1a c a cf f f P      x x x x . (26)

If ax is worse than cx , it still replaces it with a probability given by:

        0 1cf Kt

a c a cf f f P e


       x x x x , (27)

where, K  Boltzman parameter and ct  the current system temperature, corresponding to the cooling cycle c .

The Boltzman parameter is not kept constant during optimization. Instead, it is updated prior to using Eq. (27) as
follows:

 1
1

a

a

N a

N

a

K N f
K

N


 



, (28)

where, aN  number of accepted designs so far, and
aNK  previous Boltzman parameter. Initially, 0aN  and

0 1K  . The starting and final system temperatures are given by:

   
1 1

,
ln ln

s f

s f

t t
P P

    , (29)

where, sP and fP  starting and final probability of acceptance, respectively. The temperature is reduced

gradually in cN cooling cycles, as follows:

 1c ct cf t   , (30)

where,  0,1cf   cooling factor, given by:

1

1cN
f

s

t
cf

t

 
  
 

. (31)

At each cooling cycle, a number of inner loops of perturbation/improvement of the current design cx is

executed. For each loop, an array of integers representing the design variables (1 to D) is shuffled. According to
the sequence indicated in the shuffled array, each design variable i is in turn perturbed to form the candidate

design ax according to:

  2 1ia ic ix x r d   , (32)

where, id  magnitude of perturbation of variable i . Note that the side constraints L a U x x x are re-enforced

after using Eq. (32). It has been observed that inner loops are more important at low temperatures. For this
reason, the repetitions I of the inner loop are not kept constant but instead they are determined as follows:

   c s
s f s

f s

t t
I round I I I

t t

 
     

, (33)

where, sI and fI  starting and final number of repetitions of inner loops, respectively. Note that in SA the

current design is occasionally replaced by a poorer design due to Eq. (27). This means that even if a better design

replaces the current design due to (26), it may not be the best ever design. For our purposes, it is desirable to

keep track of the best design found so far during the optimization process. This best design bx is updated after

each function evaluation. In this study, the parameters of SA algorithm are set as follows: 0.5sP  ,

1 07fP E  , 300cN  , 1sI  , 3fI  ,  0.01 U L d x x .

4 TEST PROBLEMS AND OPTIMIZATION RESULTS

4.1 Spatial 25-bar tower (D=8)

The spatial 25-bar tower with 10 nodes shown in Fig. 1 has been studied extensively in the literature. All bars are
made of the same material with E = 10000 ksi and ρ = 0.1 lb/in3. Cross-sectional areas of bars can vary between
0.01 and 35 in2. Bars are grouped in eight groups (D = 8) with different compressive stress limit but the same
tensile stress limit (see Table 1). In addition, displacements of top nodes 1 and 2 must be less than 0.35 inches in
all directions. The structure is subject to two independent loading conditions (see Table 2).

Aristotelis E. Charalampakis.

Member

group
Members

Compressive
stress limit [ksi]

Tensile stress
limit [ksi]

1 1 35.092 40
2 2, 3, 4, 5 11.590 40
3 6, 7, 8, 9 17.305 40
4 10, 11 35.092 40
5 12, 13 35.092 40
6 14, 15, 16, 17 6.759 40
7 18, 19, 20, 21 6.959 40
8 22, 23, 24, 25 11.082 40

Table 1: Member grouping and stress limits for the spatial 25-bar tower.

Node Px [kips] Py [kips] Pz [kips]
Load Case I

1 0 20 -5
2 0 -20 -5

Load Case II
1 1 10 -5
2 0 10 -5
3 0.5 0 0
6 0.5 0 0

Table 2: Load cases for the spatial 25-bar tower.

Fig. 1: Schematic of the spatial 25-bar tower.

Table 3 shows that DE1 and DE3 obtained the same best design, which is slightly better than the one found

in literature in terms of weight (including MSPSO [13] by a very small margin). This design was hence used as
reference (VTR = 545.172 × 1.01 = 550.623 lb). The statistical data shown in Table 4 indicate that EPSO ranked
right after DE in terms of best weight but was less robust than ABC and HGA. The average progress of the best
solution and the variation of success rate of each algorithm with respect to the number of structural analyses are
compared in Fig. 2. It can be seen that DE1 and DE3 could reach 100% success after ~750D analyses, while
SaDE follows at ~1250D analyses. SA, being the only method not employing a population of solutions but rather
perturbing/improving a single solution, was the slowest to converge.

Aristotelis E. Charalampakis.

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1.50E+03

1.75E+03

2.00E+03

0 5000 10000 15000 20000

S
tr

u
ct

u
ra

l
W

ei
gh

t
[l

b
]

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

BEST SOLUTION

(a)(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000

S
u

cc
es

s
R

at
e

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

(b)

Fig. 2: Size optimization of the spatial 25-bar tower

(a) average progress of best solution (b) evolution of success rate.

Bar Group
Areas [in2]

Lee and
Geem (HS)

[6]

Sonmez
(ABC-AP) [9]

Li et al. (HPSO)
[10]

Li et al.
(PSOPC)

[10]

Lamberti
(CMLPSA) [5]

Kaveh and
Talatahari

(HPSACO) [25]
1 0.047 0.011 0.010 0.010 0.0100 0.010
2 2.022 1.979 1.970 1.979 1.9870 2.054
3 2.950 3.003 3.016 3.011 2.9935 3.008
4 0.010 0.010 0.010 0.100 0.0100 0.010
5 0.014 0.010 0.010 0.100 0.0100 0.010
6 0.688 0.690 0.694 0.657 0.6840 0.679
7 1.657 1.679 1.681 1.678 1.6769 1.611
8 2.663 2.652 2.643 2.693 2.6621 2.678

Weight [lb] 544.365 545.206 545.238 547.965 545.163 544.991
Penalty 1.817E+04 - - - 2.007E+03 7.686E+04

Bar Group
Areas [in2]

Talatahari et
al. (MSPSO)

[13]

Kaveh et al.
(HPSSO) [24]

Degertekin and
Hayalioglu

(TLBO) [15]

Degertekin
(EHS) [7]

Degertekin
(SAHS) [7]

Kaveh et al.
(CSP) [26]

1 0.0100 0.0100 0.0100 0.010 0.010 0.010
2 1.9848 1.9907 2.0712 1.995 2.074 1.910
3 2.9956 2.9881 2.9570 2.980 2.961 2.798
4 0.0100 0.0100 0.0100 0.010 0.010 0.010
5 0.0100 0.0100 0.0100 0.010 0.010 0.010
6 0.6852 0.6824 0.6891 0.696 0.691 0.708
7 1.6778 1.6764 1.6209 1.679 1.617 1.836
8 2.6599 2.6656 2.6768 2.652 2.674 2.645

Weight [lb] 545.172 545.160 545.095 545.486 545.118 545.145
Penalty - 2.026E+03 5.692E+04 - 6.161E+04 2.413E+04

Bar Group
Areas [in2]

Kaveh and
Zakian

(EBA) [20]

Camp (BB-
BC) [17]

Kaveh and
Talatahari

(HBB-BC) [18]

Camp and
Farshchin

(TLBO) [16]

Kaveh and
Talatahari
(CSS) [21]

This study
(DE1, DE3)

1 0.01000 0.010 0.010 0.0100 0.010 0.010
2 1.97889 2.092 1.993 1.9878 2.003 1.983
3 3.00472 2.964 3.056 2.9914 3.007 2.999
4 0.01000 0.010 0.010 0.0102 0.010 0.010
5 0.01000 0.010 0.010 0.0100 0.010 0.010
6 0.68880 0.689 0.665 0.6828 0.687 0.682
7 1.67834 1.601 1.642 1.6775 1.655 1.678
8 2.65270 2.686 2.679 2.6640 2.660 2.663

Weight [lb] 545.169 545.522 545.143 545.176 545.093 545.172
Penalty 2.000E+03 7.910E+04 4.538E+04 2.000E+03 2.820E+04 -

Note: The weight has been re-evaluated without rounding and may differ from the source. The penalty is evaluated using Eq. (3).

Table 3: Comparison of best designs obtained in the spatial 25-bar tower problem.

Aristotelis E. Charalampakis.

Algorithm SGA HGA EPSO ABC

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
579.010 30.052 561.842 9.975 664.259 123.391 570.909 21.898
Best Worst Best Worst Best Worst Best Worst
550.675 703.142 549.279 585.425 545.426 1155.675 547.124 627.713

Algorithm DE1 DE3 SaDE SA

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
545.176 0.004 545.173 0.002 545.368 0.060 797.911 179.954
Best Worst Best Worst Best Worst Best Worst
545.172 545.187 545.172 545.180 545.265 545.487 558.483 1129.935

Table 4: Statistical evaluation of algorithms' performance in the spatial 25-bar tower problem.

4.2 Planar 10-bar truss (D=10)

Fig. 3 shows the geometry and loads of a cantilever truss structure consisting of 10 bars and 6 nodes which
has been analyzed by many researchers. Two loading cases are considered: in case I, P1 = 100 kips and P2 = 0; in
case II, P1 = 150 kips and P2 = 50 kips. All bars are made of the same material with E = 10000 ksi and ρ= 0.1
lb/in3. Cross-sectional areas of bars can vary between 0.10 and 35 in2. The stress limit is set to ± 25 ksi, while the
displacement of the free nodes must be less than 2 inches in all directions.

Fig. 3: Schematic of the planar 10-bar truss.

Regarding load case I, Table 5 shows that the best result was discovered by DE3 and used as reference (VTR

= 5060.855 × 1.01 = 5111.464 lb). It is clear from Fig. 4 that EPSO, DE1 and DE3 variants find the optimum
region very quickly, as 100% success rate is reached after only ~500D analyses. SaDE follows next, producing
very good results but with slower convergence rate. Interestingly, SA may be the slowest to converge, but its
final results are comparable to EPSO. HGA follows next, reaching ~60% at the end. The small difference
between SGA and HGA during the first 10000 analyses is due to the coarser discretization of the search space
(16 and 10 bits per variable for SGA and HGA, respectively). The SSRM is triggered at 10000 analyses while
GDHC is introduced at 20000 analyses, as shown in Fig. 4a. Table 6 reveals the very small standard deviation of
the results obtained by DE1 and DE3, as well as the small final ranges for all design variables.

Regarding load case II, Table 8 shows that the best solution was discovered by DE3 and used as reference
(VTR = 4676.932 × 1.01 = 4723.701 lb). The average progress of the best solution and the evolution of the
success rate are presented in Fig. 5, whereas a statistical analysis of the results is given in Table 7. The same
conclusions can be drawn as in load case I. Once again, the final variable ranges for DE variants are very narrow.

Aristotelis E. Charalampakis.

Bar Group
Areas [in2]

Lee and Geem
(HS) [6]

Sonmez
(ABC-AP) [9]

Li et al. (HPSO)
[10]

Perez and
Behdinan (PSO)

[11]

Wu and Cheng
(AMPDE) [22]

1 30.150 30.548 30.704 33.500 30.378
2 0.102 0.100 0.100 0.100 0.100
3 22.710 23.180 23.167 22.766 23.468
4 15.270 15.218 15.183 14.417 15.196
5 0.102 0.100 0.100 0.100 0.100
6 0.544 0.551 0.551 0.100 0.533
7 7.541 7.463 7.460 7.534 7.437
8 21.560 21.058 20.978 20.467 21.084
9 21.450 21.501 21.508 20.392 21.433

10 0.100 0.100 0.100 0.100 0.100
Weight [lb] 5058.336 5060.888 5060.906 5024.248 5060.234

Penalty 1.907E+03 - 1.001E+03 2.696E+04 2.308E+03

Bar Group
Areas [in2]

Haftka and Grdal
[44]

Kaveh et al.
(HPSSO) [24]

Degertekin and
Hayalioglu

(TLBO) [15]

Lamberti and
Pappalettere

(IHS) [8]

Kaveh and
Talatahari

(HPSACO) [25]
1 30.520 30.53838 30.4286 30.5222 30.307
2 0.100 0.10000 0.1000 0.1000 0.100
3 23.200 23.15103 23.2436 23.2005 23.434
4 15.220 15.20566 15.3677 15.2232 15.505
5 0.100 0.10000 0.1000 0.1000 0.100
6 0.551 0.54890 0.5751 0.5513 0.524
7 7.457 7.46532 7.4404 7.4572 7.437
8 21.040 21.06437 20.9665 21.0367 21.079
9 21.530 21.52935 21.5330 21.5288 21.229

10 0.100 0.10000 0.1000 0.1000 0.100
Weight [lb] 5060.926 5060.864 5060.956 5060.930 5056.591

Penalty 1.108E+03 - - 1.001E+03 1.992E+03

Bar Group
Areas [in2]

Renwei and
Peng (MP) [45]

Bureerat and
Pholdee (ADEA)

[23]

Camp and
Farshchin

(TLBO) [16]

Degertekin
(SAHS) [7]

This study (DE3)

1 30.590 30.5139 30.6684 30.394 30.531
2 0.100 0.1000 0.1000 0.100 0.100
3 23.270 23.2052 23.1584 23.098 23.197
4 15.190 15.2084 15.2226 15.491 15.228
5 0.100 0.1000 0.1000 0.100 0.100
6 0.460 0.5318 0.5421 0.529 0.550
7 7.500 7.4585 7.4654 7.488 7.459
8 21.070 21.0512 21.0255 21.189 21.045
9 21.480 21.5391 21.4660 21.342 21.511

10 0.100 0.1000 0.1000 0.100 0.100
Weight [lb] 5062.781 5060.895 5060.975 5061.275 5060.855

Penalty - - - 1.031E+03 -

Note: The weight has been re-evaluated without rounding and may differ from the source. The penalty is evaluated using Eq. (3).

Table 5: Comparison of best designs obtained in the planar 10-bar truss problem (load case I).

Aristotelis E. Charalampakis.

5.00E+03

5.25E+03

5.50E+03

5.75E+03

6.00E+03

6.25E+03

6.50E+03

6.75E+03

7.00E+03

0 5000 10000 15000 20000 25000

S
tr

u
ct

u
ra

l
W

ei
g

h
t

[l
b

]

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

BEST SOLUTION

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000 25000

S
u

cc
es

s
R

at
e

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

(b)

Fig. 4: Size optimization of the planar 10-bar truss (load case I)

(a) average progress of best solution (b) evolution of success rate.

Algorithm SGA HGA EPSO ABC

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
5250.611 209.569 5149.860 117.664 5072.901 9.496 5415.715 276.013

Best Worst Best Worst Best Worst Best Worst
5099.936 5743.367 5081.989 5628.621 5063.456 5101.853 5102.510 6289.445

Algorithm DE1 DE3 SaDE SA

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
5060.865 0.006 5060.863 0.011 5062.677 2.885 5080.998 8.929

Best Worst Best Worst Best Worst Best Worst
5060.858 5060.881 5060.855 5060.915 5061.195 5077.710 5064.229 5097.011

Table 6: Statistical evaluation of algorithms’ performance in the planar 10-bar truss problem (load case I).

4.50E+03

5.00E+03

5.50E+03

6.00E+03

6.50E+03

7.00E+03

0 5000 10000 15000 20000 25000

S
tr

u
ct

u
ra

l
W

ei
gh

t
[l

b
]

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

BEST SOLUTION

(a)(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000 25000

S
u

cc
es

s
R

at
e

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

(b)

Fig. 5: Size optimization of the planar 10-bar truss (load case II)

(a) average progress of best solution (b) evolution of success rate.

Algorithm SGA HGA EPSO ABC

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
4894.657 90.345 4743.481 32.227 4694.085 10.994 4910.675 111.381

Best Worst Best Worst Best Worst Best Worst
4735.553 5079.055 4692.920 4805.366 4680.118 4717.370 4710.823 5219.890

Algorithm DE1 DE3 SaDE SA

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
4676.946 0.008 4676.940 0.007 4679.069 0.749 4796.789 215.699

Best Worst Best Worst Best Worst Best Worst
4676.937 4676.969 4676.932 4676.968 4677.916 4680.667 4682.242 5612.583

Table 7: Statistical evaluation of algorithms’ performance in the planar 10-bar truss problem (load case II).

Aristotelis E. Charalampakis.

Bar Group
Areas [in2]

Lee and
Geem (HS)

[6]

Sonmez
(ABC-AP) [9]

Li et al.
(HPSO) [10]

Kaveh et al.
(HPSSO) [24]

Kaveh and
Talatahari

(HPSACO) [25]

Degertekin and
Hayalioglu

(TLBO) [15]
1 23.250 23.4692 23.353 23.52377 23.1940 23.5240
2 0.102 0.1005 0.100 0.10000 0.1000 0.1000
3 25.730 25.2393 25.502 25.36864 24.5850 25.4410
4 14.510 14.3540 14.250 14.37799 14.2210 14.4790
5 0.100 0.1001 0.100 0.10000 0.1000 0.1000
6 1.977 1.9701 1.972 1.96973 1.9690 1.9950
7 12.210 12.4128 12.363 12.36780 12.4890 12.3340
8 12.610 12.8925 12.894 12.79722 12.9250 12.6890
9 20.360 20.3343 20.356 20.32577 20.9520 20.3540

10 0.100 0.1000 0.101 0.10000 0.1010 0.1000
Weight [lb] 4669.365 4677.089 4677.349 4676.949 4675.797 4678.315

Penalty 5.561E+03 - 1.025E+03 - 3.871E+03 -

Bar Group
Areas [in2]

Talatahari
et al.

(MSPSO)
[13]

Talatahari et
al. (PSO) [13]

Degertekin
(SAHS) [7]

Degertekin
(EHS) [7]

Bureerat and
Pholdee

(ADEA) [23]

This study
(DE3)

1 23.4432 23.9324 23.5250 23.589 23.7697 23.515
2 0.1000 0.1000 0.1000 0.100 0.1001 0.100
3 25.3718 25.2478 25.4290 25.422 25.3328 25.293
4 14.1360 14.1791 14.4880 14.488 14.3954 14.385
5 0.1000 0.1000 0.1000 0.100 0.1004 0.100
6 1.9699 1.9701 1.9920 1.975 1.9714 1.970
7 12.4335 12.5097 12.3520 12.362 12.4120 12.389
8 13.0173 13.0379 12.6980 12.682 12.8414 12.831
9 20.2717 19.9002 20.3410 20.322 20.0824 20.325

10 0.1000 0.1000 0.1000 0.100 0.1000 0.100
Weight [lb] 4677.253 4677.974 4678.848 4679.015 4677.326 4676.932

Penalty - 1.022E+03 - - 1.005E+03 -

Note: The weight has been re-evaluated without rounding and may differ from the source. The penalty is evaluated using Eq. (3).

Table 8: Comparison of best designs obtained in the planar 10-bar truss problem (load case II).

4.3 Planar 17-bar truss (D=17)

The planar 17-bar with 9 nodes shown in Fig. 6 has been studied in [6], [46], [47] and [48]. All bars are made
of the same material with E= 30000 ksi and ρ = 0.268 lb/in3. The structure is subject to a single vertical load of
100 kips at node 9. Cross-sectional areas of bars can vary between 0.1 and 50 in2. The stress limit is 50 ksi for
both tension and compression, while the displacement of free nodes must be less than ± 2 inches. Since no
design variable linking was used, the problem dimensionality is D = 17.

1 5

3 7

84

2 615 16

X

Y

L = 100 in

9

68

P

7

L = 100 in

9

11 14

12

10 1317

2

3 1

4

5

L = 100 in L = 100 in

Fig. 6: Schematic of the planar 17-bar truss.

Aristotelis E. Charalampakis.

It can be seen from Table 9 that the best design was obtained by DE3. The corresponding structural weight

was taken as target to compute VTR = 2581.895 × 1.01 = 2607.714 lb. The statistical data given in Table 10
confirm the robustness of DE1 and DE3 that achieved a standard deviation on optimized weight equal to 0.047
and 0.086 lb, respectively, converged practically to the same optimized weight. The other algorithms ranked in
the following order: SaDE, EPSO, SA, HGA and ABC.

The average progress of the best solution and the variation of success rate of each algorithm with respect to
the number of structural analyses are compared in Fig. 7. It can be seen that DE1, DE3 could reach 100%
success after ~900D analyses. SaDE also reached 100 success but much later. EPSO was the fastest algorithm in
the early stages of the optimization but about 20% of the runs failed to succeed at the end. SA achieved 65%
success rate when measured at the end of the analyses.

2.50E+03

3.50E+03

4.50E+03

5.50E+03

6.50E+03

7.50E+03

0 5000 10000 15000 20000 25000 30000 35000 40000

S
tr

u
ct

u
ra

l W
ei

gh
t

[l
b

]

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

BEST SOLUTION

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000 25000 30000 35000 40000

S
u

cc
es

s
R

a
te

Structural Analyses

SGA

HGA

EPSO

ABC

DE1

DE3

SaDE

SA

(b)

Fig. 7: Size optimization of the planar 17-bar truss

(a) average progress of best solution (b) evolution of success rate.

Bar Group
Areas [in2]

Lee and Geem
(HS) [6]

Khot and Berke
(OC) [46]

Barakat and
Ibrahim (SCEO)

[47]

Adeli and
Kumar (GA)

[48]

This study
(DE3)

1 15.821 15.930 15.897700 16.02858206 15.911
2 0.108 0.100 0.100367 0.10695021 0.100
3 11.996 12.070 12.064600 12.18302437 12.053
4 0.100 0.100 0.100189 0.11005022 0.100
5 8.150 8.067 8.085990 8.41651683 8.076
6 5.507 5.562 5.562290 5.71486143 5.552
7 11.829 11.933 11.939700 11.33052266 11.963
8 0.100 0.100 0.100009 0.10540021 0.100
9 7.934 7.945 7.950370 7.30051460 7.958

10 0.100 0.100 0.100005 0.11470023 0.100
11 4.093 4.055 4.049050 4.04550809 4.057
12 0.100 0.100 0.100005 0.10075020 0.100
13 5.660 5.657 5.665820 5.61101122 5.651
14 4.061 4.000 3.988130 4.04550809 4.005
15 5.656 5.558 5.565300 5.15221030 5.565
16 0.100 0.100 0.100031 0.10695021 0.100
17 5.582 5.579 5.578710 5.28551057 5.571

Weight [lb] 2580.975 2581.923 2581.899 2543.573 2581.895
Penalty 1.439E+03 - 1.000E+03 1.797E+04 -

Note: The weight has been re-evaluated without rounding and may differ from the source. The penalty is evaluated using Eq. (3).

Table 9: Comparison of best designs obtained in the planar 17-bar truss problem.

Aristotelis E. Charalampakis.

Algorithm SGA HGA EPSO ABC

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
2864.364 132.409 2697.876 53.008 2597.112 31.927 3170.541 188.595

Best Worst Best Worst Best Worst Best Worst
2678.314 3320.587 2612.075 2803.950 2582.851 2757.438 2906.426 3724.046

Algorithm DE1 DE3 SaDE SA

Weight
[lb]

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.
2581.992 0.047 2581.981 0.086 2584.694 4.388 2605.621 21.507

Best Worst Best Worst Best Worst Best Worst
2581.919 2582.091 2581.895 2582.242 2582.511 2606.616 2586.249 2660.871

Table 10: Statistical evaluation of algorithms’ performance in the planar 17-bar truss problem.

5 CONCLUSIONS

This study analyzed the relative performance of variants of Genetic Algorithms (SGA, HGA), Particle
Swarm Optimization (EPSO), Artificial Bee Colony (ABC), Differential Evolution (DE1, DE3 and SaDE) and
Simulated Annealing (SA) in sizing optimization problems of truss structures. The comparison was based on a
framework that is both unbiased and meaningful. In order to assess the differences between algorithms we make
use of rigorous statistical analysis with large samples, common computational budget depended on the problem
dimensionality, careful accounting for all function evaluations and monitoring of the success rate of each
algorithm during the analyses.

Regarding the algorithms, SGA provides a baseline performance whereas the HGA, which combines a search
space reduction method (SSRM) with a local optimizer, showed improved performance with respect to SGA.
The enhanced PSO algorithm (EPSO) resulted very competitive in the small to medium problems examined in
this study. Its performance should also be examined in more difficult problems, which is a topic for further
research. ABC is not easily trapped into local optima but has slow convergence because a single design variable
is changed per mutant vector. The present results indicate that ABC could not compete with EPSO and DE
variants. As far as it concerns DE variants, DE1 is based on rand/1/bin and DE3 is a stochastic mixture of
rand/1/bin and best/1/bin. These variants combined very good convergence rate with robustness, stability and
scalability. DE3 in particular showed improved convergence rate in the small-scale problems. A very greedy DE
variant, based solely on best/1/bin, was also tested in the preliminary versions of this study and found to be very
competitive only in small problems. Regarding SaDE, it appears that the advantage of its adaptive nature is
traded-off by a generally small hysteresis (delay) in the convergence rate, as compared to DE1 and DE3. Note
that the latter algorithms utilize fixed settings that were expected to work well based on the specific problem
characteristics. This information may not be available for other problems, which makes SaDE and similar self-
adapting algorithms a very good choice.

SA is the only method examined in this study which perturbs/improves a single solution. The lack of
synergistic information within a population had the obvious effect that SA did not show explosive initial
performance. Nevertheless, its progress was clear and it is evident that the Metropolis test (Eq. (27)) is a
powerful method to escape local optima. For most of the small problems, this was enough to allow SA to rank
among the best. Its performance should also be examined in more difficult problems, which is a topic for further
research.

Overall, DE was definitely superior over the rest of the algorithms and found very competitive designs,
which in some cases were even better than those reported in literature.

REFERENCES

[1] Feury, C., Geradin, M. (1978) “Optimality criteria and mathematical programming in structural weight
optimization,” Comput Struct 8(1) pp. 7–17.

[2] Eiben, A.E., Smith, J.E. (2003) Introduction to Evolutionary Computing. Springer, New York.
[3] Coello, C.A., Christiansen, A.D. (2000) “Multiobjective optimization of trusses using genetic algorithms,”

Comput Struct 75 pp. 647–60.
[4] Koumousis, V., Georgiou, P. (1994) “Genetic algorithms in discrete optimization of steel truss roofs,” J

Comput Civ Eng 8(3) pp. 309–25.
[5] Lamberti, L. (2008) “An efficient simulated annealing algorithm for design optimization of truss

structures,” Comput Struct 86 pp. 1936–53.
[6] Lee, K.S., Geem, Z.W. (2004) “A new structural optimization method based on the harmony search

algorithm,” Comput Struct 82 pp. 781–98.

Aristotelis E. Charalampakis.

[7] Degertekin, S.O. (2012) “Improved harmony search algorithms for sizing optimization of truss structures,”
Comput Struct 92–93 pp. 229–41.

[8] Lamberti, L., Pappalettere, C. (2009) “An improved harmony-search algorithm for truss structure
optimization,” Proceedings of the twelfth international conference civil structural and environmental
engineering computing. Stirlingshire: Civil-Comp Press.

[9] Sonmez, M. (2011) “Articial bee colony algorithm for optimization of truss structures,” Appl Soft Comput
11 pp. 2406–18.

[10] Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H. (2007) “A heuristic particle swarm optimizer for optimization of
pin connected structures” Comput Struct 85 pp. 340–9.

[11] Perez, R.E., Behdinan, K. (2007) “Particle swarm approach for structural design optimization. Comput
Struct 85 pp. 1579–88.

[12] Fourie, P.C., Groenwold, A.A. (2002) “The particle swarm optimization algorithm in size and shape
optimization,” Struct Multidisc Optim 23(4) pp. 259–67.

[13] Talatahari, S., Kheirollahi, M., Farahmandpour, C., Gandomi, A.H. (2013) “A multi-stage particle swarm
for optimum design of truss structures,” Neural Comput Appl 23: pp. 1297–309.

[14] Dimou, C.K., Koumousis, V.K. (2009) “Reliability based optimal design of truss structures using particle
swarm optimization,” J Comput Civil Eng-ASCE 23 pp. 100–9.

[15] Degertekin, S.O., Hayalioglu, M.S. (2013) “Sizing truss structures using teaching-learning-based
optimization,” Comput Struct 119 pp. 177–88.

[16] Camp, C.V., Farshchin, M. (2014) “Design of space trusses using modified teaching–learning based
optimization,” Eng Struct 62 pp. 87–97.

[17] Camp, C. (2007) “Design of space trusses using Big Bang–Big Crunch optimization,” J Struct Eng 133(7)
pp. 999–1008.

[18] Kaveh, A., Talatahari, S. (2009) “Size optimization of space trusses using Big Bang–Big Crunch
algorithm,” Comput Struct 87 pp. 1129–40.

[19] Kaveh, A., Ilchi Ghazaan, M. (2015) “A comparative study of CBO and ECBO for optimal design of
skeletal structures,” Comput Struct 153 pp. 137–47.

[20] Kaveh, A., Zakian, P. (2014) “Enhanced bat algorithm for optimal design of skeletal structures,” Asian J
Civil Eng (BHRC) 15(2) pp. 179–212.

[21] Kaveh, A., Talatahari, S. (2010) “Optimal design of skeletal structures via the charged system search
algorithm,” Struct Multidisc Optim 41 pp. 893–911.

[22] Wu, C-Y., Tseng, K-Y. (2010) “Truss structure optimization using adaptive multi-population differential
evolution,” Struct Multidisc Optim 42, pp. 575–90.

[23] Bureerat, S., Pholdee, N. (2015) “Optimal truss sizing using an Adaptive Differential Evolution algorithm,”
J Comput Civil Eng-ASCE, 04015019.

[24] Kaveh, A., Bakhshpoori, T., Afshari, E. (2014) “An efficient hybrid particle swarm and swallow swarm
optimization algorithm,” Comput Struct 143 pp. 40–59.

[25] Kaveh, A., Talatahari, S. (2009) “Particle swarm optimizer, ant colony strategy and harmony search
scheme hybridized for optimization of truss structures,” Comput Struct 87 pp. 267–83.

[26] Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M. (2014) “Chaotic swarming of particles:
A new method for size optimization of truss structures,” Adv Eng Softw 67 pp. 136–47.

[27] Coello C.A.C. (2002) “Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: survey of the state of the art,” Comput Methods Appl Mech Eng 191 pp. 1245–87.

[28] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2002) Numerical recipes in c++: the art of
scientific computing. Cambridge University Press.

[29] Holland, J.H. (1975) Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan
Press.

[30] Charalampakis, A.E., Koumousis, V.K. (2008) “Identification of Bouc–Wen hysteretic systems by a hybrid
evolutionary algorithm,” J Sound Vib 314 pp. 571–85.

[31] Marano, G.C., Quaranta, G., Monti, G. (2011) “Modified genetic algorithm for the dynamic identification
of structural systems using incomplete measurements,” Comp Aided Civ Infr Eng 26(2) pp. 92–110.

[32] Kennedy, J., Eberhart, R.C. (1995) “Particle swarm optimization,” Proceedings of IEEE international
conference on neural networks IV. Perth Australia, IEEE press Piscataway, NJ, pp. 1942–8.

[33] Charalampakis, A.E., Dimou, C.K. (2010) “Identification of Bouc–Wen hysteretic systems using particle
swarm optimization,” Comp Struct 88 pp. 1197–205.

[34] Charalampakis, A.E., Dimou, C.K. (2011) “Comparison of differential evolution, particle swarm
optimization and genetic algorithms for the identification of Bouc-Wen hysteretic systems,” Proceedings of
the second international conference on soft computing technology in civil, structural and environmental
engineering CSC2011, Chania, Greece.

Aristotelis E. Charalampakis.

[35] Charalampakis, A.E., Dimou, C.K. (2015) “Comparison of evolutionary algorithms for the identification of
Bouc-Wen Hysteretic Systems,” J Comput Civil Engin ASCE 29(3) 04014053.

[36] Karaboga, D., Basturk, B. (2008) “On the performance of Artificial Bee Colony (ABC),” Appl Soft Comp
8(1) pp. 687–97.

[37] Storn, R., Price, K. (1997) “Differential evolution – a simple and efficient heuristic for global optimization
over continuous spaces,” J Global Optim 11 pp. 341–59.

[38] Storn, R., Price, K., Lampinen, J.A. (2005) Differential evolution – a practical approach to global
optimization, Springer.

[39] Qin, A., Huang, V.L., Suganthan, P.N. (2009) “Differential evolution algorithm with strategy adaptation for
global numerical optimization,” IEEE T Evolut Comput 13(2) pp. 398–417.

[40] Zhang, J., Sanderson, A.C. (2009) “JADE: adaptive differential evolution with optional external archive,”
IEEE T Evolut Comput 13(5) pp. 945–58.

[41] Yang, Z., Tang, K., Yao, X. (2008) “Self-adaptive differential evolution with neighborhood search,”
Proceedings IEEE Congr Evolut Comput, Hong Kong, China, pp. 1110–6.

[42] Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P. (1983) “Optimization by simulated annealing,” Science 220 pp.
671–80.

[43] Balling, R.J. (1991) “Optimal steel frame design by simulated annealing,” J Struct Engng 117(6) pp. 1780–
95.

[44] Haftka, R., Grdal, Z. (1992) Elements of structural optimization. 3rd ed. Dordrecht: Kluwer Academic
Publishers.

[45] Renwei, X., Peng, L. (1986) “An efficient method for structural optimization,” Acta Mech Sinica 2(4) pp.
348–61.

[46] Khot, N.S., Berke, L. (1984) “Structural optimization using optimality criteria methods,” In: Atrek E.,
Gallagher R.H., Ragsdell K.M., Zienkiewicz O.C., editors. New directions in optimum structural design.
New York: John Wiley.

[47] Barakat, S., Ibrahim, H. (2011) “Application of shuffled complex evolution global optimization technique
in the design of truss structures,” Proceedings of the Forth International Conference on Modeling,
Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, Malaisia.

[48] Adeli, H., Kumar, S. (1995) “Distributed genetic algorithm for structural optimization,” J Aerospace Eng,
ASCE 8(3) pp. 156–63.

