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Abstract. We present a method for the analytical evaluation of globally optimal solutions for the minimum 
weight design of trusses. The basis of the methodology is the Cylindrical Algebraic Decomposition (CAD) 
algorithm, in tandem with powerful symbolic computation for the discovery of stationary points. Certain final 
answers to well-known problems are produced, while future improvements in both the algorithm implementation 
and the computer capabilities may allow the solution of even more difficult problems. To the best of our 
knowledge, no similar attempt can be found in the literature. 

1 INTRODUCTION 

Since the advent of inexpensive computing, structural design optimization has been a topic of huge interest 
among researchers. The aim is to design a structure so that it is optimal in some sense (most commonly, its 
weight/cost) while satisfying a number of constraints related to its safety, integrity, stiffness, or any other 
property. In most real-life cases, featuring multimodality and non-convex feasible regions, the use of simple 
gradient methods is problematic. This led to mathematical programming (MP) and optimality criteria (OC) 
methods, which have been used extensively in the past [1]. In MP, direct minimization is attempted e.g. using 
decomposition into a sequence of linear programming problems. In OC methods, assumptions on the conditions 
in the optimum state (e.g. “fully stressed design”) provide simple recursion formulas for redesign. Nowadays, 
metaheuristic algorithms [2] have emerged as the best way for solving complex optimization problems. These 
algorithms are usually inspired by evolution, swarm intelligence or physical phenomena principles. 

A different path is followed in this study, as analytical methods are employed for the discovery of globally 
optimum solutions. In this effort, key is the use of Cylindrical Algebraic Decomposition algorithm, proposed by 
Collins [3]. The algorithm, originally motivated for use in quantifier elimination but later employed in diverse 
fields, has been implemented in several symbolic computation programs including Mathematica (developed by 
Strzeboński [4]), QEPCAD [5], RedLog [6], among others. Using powerful symbolic computation, we are able 
to provide optimum solutions to non-trivial problems. These solutions are the final answers to specific 
benchmark problems and can be used for comparison purposes. To the best of our knowledge, no similar attempt 
can be found in the literature. 

2 OBJECTIVE FUNCTION 

The weight of the truss is used as objective function: 

    
1

D

i i i
i

f L x 


 x , (1) 

where, D = number of design variables (groups of bars),  1 2, ,..., Dx x xx = a vector containing the cross-

sectional areas; iL  and i  = total length and specific weight corresponding to group i . The optimization 

problem can be stated as the minimization of f  when: 
(a) x  is subjected to the following side constraints: 

 L U x x x , (2) 
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where, Lx  and Ux  are vectors defining the minimum and maximum allowable areas, respectively 

(vector inequalities apply element-wise); and 
(b) additional stress, buckling stress and displacement constraints are imposed, depending on the definition 

of the problem. 

3 CYLINDRICAL ALGEBRAIC DECOMPOSITION 

Given a finite set  1 2, ,..., nP R x x x  of polynomials in n  variables, a P -invariant cylindrical algebraic 

decomposition is a special partition of n  into components, called cells, over which each of the polynomials 

from P  has constant sign on each cell of the decomposition [7]. The cylindrical algebraic decomposition (CAD) 

algorithm is an algorithmic procedure proposed by Collins [3] which constructs these decompositions; it also 

provides a point in each cell, called sample point, which can be used to determine the sign of the polynomials 

[7]. 

Further, given a logical combination of polynomial equations and inequalities in n  real unknowns, one can 

use the CAD algorithm to find a cylindrical algebraic decomposition of its solution set [4]. This is applicable 

when the objective function and the constraints are real algebraic functions [8]. A downside of the method is its 

doubly exponential complexity in the number of variables [8]. This decomposition provides the feasible domain 

in a suitable form for exact global optimization. 

4 BENCHMARK PROBLEMS 

4.1 3-bar truss  

The 3-bar truss is a widely used example which appears in several variations. The arrangement of the truss 
shown in Figure 2 is studied by Ray and Saini [10], Ray and Liew [11], Hernendez [12] and Liu et al. [13], 
among others. Only stress constraints are taken into account. Formally, the problem is stated as follows: 
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Applying the CAD algorithm in the sequence  1 2,x x  we obtain: 
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The above describes precisely the coordinates of all the points   2
1 2,x x   for which the constraints 1 0c  , 

2 0c   and 3 0c   hold simultaneously. The algorithm could have been applied to even more constraints 

(representing stress, displacement or any other kind of constraint), providing its solution set into a convenient 
form. Note that CAD is not related to the objective function itself.  

According to Eq. (4), the infimum value of the depended variable 2x  is    1 1 12 1 2 1x x x  . This value is 

optimal with respect to f  because 2 0f x    everywhere. Note that this holds in general, since regarding the 

minimum weight design of trusses, according to Eq. (1) we obtain that 0 {1, 2,..., }i i if x L i D      . We 

substitute the infimum of the depended variable 2x  in the objective function to obtain: 
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The minimum of  1 1f x  for   11 2 3 2 1x     is obtained for 

    1 1 1

2

1 12 1 6 1 1 2 0df dx x x xL     , which yields the single analytical solution  opt
1 3 3 6x    in 

the relevant range. Note that  
32

1
2

1 1 2 2 2 1 0Ld xf dx      1 1 2 3 2,1x    
 

. Based on (4) and (5), 

it follows that opt
2 1 6x   and  1min min 2 3 2f f L   . 

 

Figure 2: 3-bar truss 

A graph of the constraints, the feasible domain and the contours of the objective function is shown in Figure 

3. Only constraint 1 0c   is active. The results for the 3-bar truss are summarized in Table 1 and compared to the 

results produced by other researchers. The ellipses (“…”) at the end of a number signify that the result is not 
rounded, but can be evaluated to arbitrary precision. 

Alternatively, we could apply the CAD algorithm in the opposite sequence  2 1,x x  to obtain: 
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We substitute the infimum of the depended variable 1x  in the objective function: 

    2
2 22 2 2 2 4f x x x L   . (7) 

The minimum of  2 2f x  for 20 1x   is obtained for 2 2 0df dx   which, of course, leads to the same 

results. This is related to the fact that changing the order of the variables produces a different description of the 

same solution set. Nevertheless, problems easily solved using one variable ordering can be unsolvable with 

another. In [9], a number of problems is presented where one ordering leads to a cell count constant in the 

number of variables and another to one doubly exponential. 
 

 
Ray & 
Saini 
[10] 

Ray & Liew 
[11] 

Hernendez 
[12] 

Liu et al. [13] 
This study 

(analytically) 
This study 

(numerically) 

1x  0.795 0.7886210370 0.788 0.788675134746  3 3 6  0.788675… 

2x  0.395 0.4084013340 0.408 0.408248290037 1 6  0.408248… 

min f  264.3 263.8958466 263.9 263.895843376468  2 3 2L   263.895843… 

Table 1: Results for the 3-bar truss 
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Figure 3: Feasible domain, constraints and objective function contours for the 3-bar truss. 

4.2 18-bar truss 

Figure 4 shows the geometry and loading of a planar truss consisting of eighteen bars and eleven nodes. The 

grid size is 250L   in. and the point load at each free top node is 20P   kips. All bars are constructed from the 

same material with an elastic modulus of 10,000E   ksi and mass density of 0.1   lb/in3. The stress 

constraint is max min 20     ksi for both the tension and compression members. The Euler buckling 

constraint is also taken into account for compression members. The buckling stress for the i th member is 

calculated as: 

 
2

E i
i

i

EA

L


   . (8) 

where iL , iA   length and area of the i th member, respectively, and 4   a constant that is determined 

from the geometry. The number of independent size variables is reduced to four groups as follows: (i) bars 1, 4, 

8, 12 and 16; (ii) bars 2, 6, 10, 14 and 18; (iii) bars 3, 7, 11 and 15; (iv) bars 5, 9, 13 and 17. The minimum and 

maximum cross-sectional areas of each member are min 0.10A   in2 and max 50A   in2, respectively. 

L
 =

 2
5

0 
in

 

Figure 4: 18-bar truss. 

This problem has previously been presented by several researchers as an example of size optimization (as in 
Lee & Geem [14] and Sonmez [15]), or size and shape optimization (as in Lamberti [16]). An important 
observation is that the truss is statically determinate. This means that the force acting on each bar is independent 
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of the sizing configuration and can be evaluated analytically by simple equilibrium equations. The optimal 
solution is provided in the Appendix, both with and without member grouping. In light of this, size and shape 
optimization can be reduced to shape optimization only. 

Optimization of the 18-bar truss becomes more challenging when considering displacement constraints 
instead of stress constraints. In the following analysis, we use member grouping and optimize the truss while 
limiting the vertical displacement of the tip of the cantilever (node 1) to 6 inches at most. Using standard 
analysis, the vertical displacement of node 1 is given by: 

 1

33 139 2 2 6 14 2

i i i

y

i i i ivA A
u

A A


    , (9) 

where, the result is given in inches, positive displacement is upwards, and iA  to ivA   areas of member 

groups 1 to 4, given in square inches. Using standard notation, the optimization problem is formally stated as 
follows: 
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Applying the CAD algorithm on the constraints of Eq. (10) in the sequence  1 2 3 4, , ,x x x x , we obtain: 
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We substitute the infimum of the last variable 4x  in the objective function to obtain: 

 

 
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Solving for the stationary points of 123f  with respect to 3x  we obtain two solutions, one of which produces 

invalid (negative) 3x  in the region of 1 2,x x  defined by Eq. (11). We proceed with the valid solution: 
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and substitute it in Eq. (12) to obtain: 
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. (14) 
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Figure 5 shows the contours of 12f  at the feasible domain of 1 2,x x . Solving for the stationary points of 12f  

with respect to 2x  we obtain four solutions, etc. Finally, after analyzing all branches of the solution tree, 

rejecting the invalid stationary points and sorting the valid ones by their objective function value, we obtain the 

global optimum, which is presented in Table 2. 

 

 

Figure 5: Feasible domain and contours of objective function f12 for the size optimization of 18-bar truss. 

4 CONCLUSIONS 

In this study, analytical methods are employed to discover exact, globally optimal solutions for the minimum 
weight design of trusses. The basis of the methodology is the Cylindrical Algebraic Decomposition algorithm, 
proposed by Collins [2]. Exact results to certain well-known problems are produced. The algorithm is expensive 
in the number of variables; however, the topic remains active among researchers in the symbolic computation 
field, with many improvements since the original version [6], while both the software implementations and the 
computer capabilities constantly improve. Facing even more difficult problems in the future seems feasible. 

5 APPENDIX: OPTIMUM DESIGN OF 18-BAR TRUSS 

The truss is statically determinate. The optimum area of each bar is easy to evaluate independently based on 
the following rule: 
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maxopt

min

min

max , , 0

max , , , 0
 

i
i

i

i i
i i

N
A N

A
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
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  
  

 
 

 
    

 

, (15) 

where, iN   the force acting on the i th bar, determined by equilibrium. Using a smaller area for any member 

produces stress violation; using a larger area is suboptimal. This methodology is applicable to all statically 
determinate trusses with stress constraints. When optimizing these trusses with evolutionary algorithms, size and 
shape optimization can be reduced to shape optimization only. 

Regarding the 18-bar truss, described previously, the optimum areas as well as the minimum total weight are 
summarized in Table 3. If member grouping is removed, the results of Table 4 are obtained.  
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 This study (analytically) 
This study 

(numerically) 
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973 14 2 2 131376 31178 2 7336 21 15456 42
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A

A
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
 28.905476… 

iiiA  [in2] 
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  
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 9.781980… 

ivA  [in2] 
28 2

12 12 139 2 2 66

i ii iii

i ii iii i ii i iii i iii ii iii

A A A

A A A A A A A A A A A   
 14.942222… 

min f  

[lb] 
 125 100 25 2 100 100 2i ii iii ivA A A A     9568.715174… 

Table 2: Optimum results for the 18-bar truss with displacement constraint at the tip. 

 

 
Lee & 

Geem [14] 
Sonmez [15] This study (analytically) 

This study 
(numerically) 

iA  [in2] 9.980 10.000 max10P   10. 

iiA  [in2] 21.630 21.651  15  P E L  21.650635… 

iiiA  [in2] 12.490 12.500  5  P E L  12.5 

ivA  [in2] 7.057 7.071 
max5 2P   7.071067… 

min f  [lb] 6421.880 6430.529  
max

90
5 4 4 3 6

P P
L L

E


 

 
    

 
 6430.529054… 

Table 3: Optimum results for the 18-bar truss with stress constraints (with member grouping) 
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Member 
Length 

(analytically) 
Acting force 
(analytically) 

Acting force 
(numerically) 

[kips] 

Optimum area 
(analytically,  

based on (15)) 

Optimum area 
(numerically)  

[in²] 

1 L  P  20. maxP   1. 

2 2L  2P  -28.284271...  2  2P LE  9.401508… 

3 L  P  -20.   P E L  5.590170… 

4 L  P  20. maxP   1. 

5 2L  2 2P  56.568542... 
max2 2P   2.828427… 

6 L  3P  -60.  3  P E L  9.682458… 

7 L  3P  -60.  3  P E L  9.682458… 

8 L  3P  60. max3P   3. 

9 2L  3 2P  84.852813... 
max3 2P   4.242641… 

10 L  6P  -120.  6  P E L  13.693064… 

11 L  4P  -80.  4  P E L  11.180340… 

12 L  6P  120. max6P   6. 

13 2L  4 2P  113.137084... 
max4 2P   5.656854… 

14 L  10P  -200.  10  P E L  17.677670… 

15 L  5P  -100.  5  P E L  12.5 

16 L  10P  200. max10P   10. 

17 2L  5 2P  141.421356... 
max5 2P   7.071068… 

18 L  15P  -300.  15  P E L  21.650635… 

min f  (analytically) 
min f  

(numerically) [lb] 

 4

max

49
3 2 2 2 3 5 6 10 15

P P
L L

E


 

 
        

 
  4098.813372… 

Table 4: Optimum results for the 18-bar truss with stress constraints (without member grouping). 
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