
1

Abstract

The concept of using full memory in Genetic Algorithms (GAs) is examined. This is

achieved by an encapsulated operator that is placed between the GA and the

subroutine evaluating the objective function. The operator records all evaluated

solutions and selectively replaces the solutions requested by the GA with similar

ones taken from the memory. Significant increase in performance is observed, which

is evident even at the early stages of evolution, in accordance with the “Birthday

Problem”. Implementation with Standard GA shows great promise, while the

encapsulation of the code facilitates implementation with other Evolutionary

Algorithms.

Keywords: genetic algorithms, external memory, evolutionary computation.

Equation Chapter 1 Section 1

1 Introduction

Evolutionary Algorithms (EAs) are biologically inspired stochastic algorithms that

have been successfully applied to a wide variety of problems [1]. The most widely

known type of EAs are the Genetic Algorithms (GAs), which were initially

conceived by John Holland [2] and later employed in virtually any problem

imaginable.

Most EAs utilize some kind of short- or long-term memory to explore the Design

Space (DS) and produce better solutions. In the case of Standard GA (SGA) the

algorithm is practically memoryless, as it simply evolves a population of candidate

solutions. Elitism is introduced as a short-term memory operator, linking the current

to the previous generation only, which is shown to improve performance [3]. In the

case of Particle Swarm Optimization (PSO) algorithms [4], each particle retains

memory of its personal best-so-far position while the whole swarm also retains

memory of its global best-so-far position. Optimization is achieved through

Newtonian dynamics between the particles of the swarm. In this case, the memory is

Introducing full memory in Genetic Algorithms

A. E. Charalampakis

Proc. 2nd International Conference on Soft Computing Technology in Civil,

Structural and Environmental Engineering (CSC2011), Chania, Greece; 2011.

2

long-term, since it extends to the beginning of evolution, but it is not full since only

the best results (local and global) are retained and utilized.

EAs have been applied in numerous engineering problems, including

optimization and identification, to great success. In real life, most engineering

problems feature a medium to high number of design variables and a

computationally expensive black-box objective function. In these cases, it is safe to

assume that the computational cost of the EA itself is negligible when compared to

the cost of the function evaluations required for evolution. Indeed, a single function

evaluation may require some minutes or even hours in the most advanced computer

systems [3], [5].

To cope with this problem, several methods have been developed. Herein, these

methods are classified into three broad categories based on their main motivation, as

follows:

1) Those that aim at reducing the complexity of the problem. The most direct

method is problem approximation [6], which reduces the computational

cost of the objective function. A typical example is the use of coarser

meshes for finite element analyses. Other methods tackle the high

dimensionality or take advantage of problem-specific characteristics

through problem partitioning [7], screening [3], space reduction [3], etc.

2) Those that use approximation to reduce the number of necessary function

evaluations. This can be achieved using functional approximation [8],

fitness inheritance [9] or clustering [10].

3) Those that aim at improving the performance of the EA itself. Examples

include elitism [3], variable population size and partial initialization of the

population as in Sawtooth-GA [11], dynamic change of crossover and

mutation probabilities [3], hybrid methods [12], to name a few.

Seen from different points of view, some methods may belong to different

categories while combination of methods may produce even better results.

The initial motivation of this work lies in the methods of the third category. It

was observed that GAs often re-evaluate a solution that has already been evaluated

in the past. This is unacceptable, especially in case the computational cost of the

objective function is significant. The removal of duplicate genotypes has been

confirmed to increase performance by numerous researchers. Mauldin [12] was

probably the first to observe its benefits. He devised a “uniqueness operator” which

was employed in a binary-encoded GA and prevented duplicate and similar

genotypes in the population. Later, Ronald [14] elaborated on this and presented a

hash tagged duplicate removal algorithm, which reduced the complexity of

comparing genotypes to O(Lc) instead of O(LcP
2
) of the traditional comparison

algorithms (Lc=chromosome length, P=population size). To extend the search

beyond the current generation, an external memory operator is required. Indeed,

Povinelli and Feng [15] employed a small hash table to store the most recently

evaluated chromosomes. Kratica [16] employed a fixed-size cache to store all

evaluated individuals. Recently, Yuen and Chow [17] presented a non-revisiting GA

(NrGA) which uses complete memory in the form of a binary space partitioning tree.

In this, revisits are completely eliminated.

3

Apart from the removal of duplicate genotypes (or prevention of their re-

evaluation), the reuse of stored information has also been investigated in the

literature. One example is the “Hall of Fame”, introduced by Rosin and Belew [18],

which contains the best individuals from previous generations. Reintroducing

genotypes which were successful in the past is important in the concept of

competitive co-evolution. The reason is that these genotypes may also be successful

in the future and, once extinct, they are difficult to rediscover. In static optimization

problems, however, reintroducing extinct genetic material in the hope of

rediscovering successful solutions is usually not very effective because old

genotypes were strictly worse according to the fitness measure [18].

Nevertheless, the concept of chromosome reuse in static optimization problems

has been investigated by Acan and Tekol [19]. They observed that a significant

number of chromosomes of average fitness remain unused, in the sense that they do

not actually participate in the recombination process. As an estimate, this number is

about equal to 74% of the population in the case of the Ackley function with 20

variables and tournament selection. To cope with this fact, a number of

chromosomes of above-average quality, which are not utilized for recombination in

the current generation, are inserted into a chromosome library of fixed size and

selectively utilized at later stages of evolution. The motivation in [19] is to trace

some of the untested search directions in the recombination of potentially promising

solutions. Improved performance with respect to conventional GAs is also reported.

A similar concept, under the term “evolutionary reincarnation”, was examined by

Prime and Hendtlass [20]. Two “islands”, or separate populations, are utilized in

tandem. The first holds the conventional population while the second contains

information taken from earlier populations, i.e. extinct genetic material which may

be “reincarnated” based on a suitable strategy. The motivation in [20] is to preserve

diversity, by allowing some backtracking to occur along the path to the solution,

thus providing an escape mechanism from evolutionary “dead-ends”.

Common aim in the aforementioned methods is the increase of diversity among

the population in order to improve performance. A different approach is presented

herein. A simple complete-memory operator is proposed which records all evaluated

individuals. Henceforth, this operator will be referred to as “the Registrar”, while the

list of all accurately evaluated solutions will be referred to as “the registry”. Unlike

other methods that reuse extinct genetic material in order to increase diversity (in

fact, opposite to them), the Registrar does so to avoid function evaluations. Unlike

other methods that prevent revisits, the Registrar not only allows revisits but actually

encourages them, as follows: when a function evaluation is requested by any EA,

the new solution is compared to the ones in the registry. If some similarity criteria

are met, the candidate solution is replaced by the most similar (and already

evaluated) solution. In the opposite case, the function evaluation is performed as

usual and the result is stored into the registry for later use.

It will be shown that the Registrar is effective both at the early and later stages of

evolution. In any case, a function evaluation that is avoided due to an exact match

from the registry cannot be but beneficial for performance [17]. The Registrar is

very effective even at the early stages of search space exploration, although few

individuals have been stored into the registry. This beneficial effect is more

4

important because it is in accordance with the limited computational time budget

associated with computationally expensive problems.

2 The “Birthday Problem” or “Birthday Paradox”

The effectiveness of the Registrar at the early stages of search space exploration is

best explained by the “Birthday Problem”, which is one of the most famous counter-

intuitive problems in probability [21]. The problem is stated as follows: How many

persons must a group contain in order to achieve a better than even (>50%)

probability that two members share the same birthday? (We assume that the birthday

of a person forms a DS with 365 distinct and equally probable values). Most people

think that the answer is about half the number of days in a year (183), but this is the

correct answer to another problem: How many people with different birthdays are

needed in order to achieve a better than even chance that one of them shares your (or

any other given) birthday? The correct answer to the Birthday Problem is a

remarkably small number; it can be proved that only 23 persons suffice [21].

Now consider an EA that is sequentially evaluating potential solutions, which are

stored into a memory pool. The analogy shows that, although the size of the DS may

be comparatively huge, it is actually very probable that the pool contains two

identical solutions, one of which could have been avoided in the process. (The

possibility of three- or more-member match is small compared to the case of two-

member match and, although beneficial, it is neglected in the reasoning). Note the

subtle difference: although the probability of match between each new random

solution and one of the unique members of the pool is indeed small (which is in

accordance to the common belief), multiple such “coin tosses” have been performed

in order to fill the pool with these unique members. In other words, it becomes

increasingly difficult to fill the pool with unique members. Computer simulations of

the workings of the Registrar have confirmed that the possibility of two-member

match is in accordance with the results of the Birthday Problem.

Trying to take advantage of this ideal situation, the well-known “curse of

dimensionality” plagues our effort. Omitting details, this is equivalent of requiring

two persons to share not only their birthday, but also their year of birth. Thus, the

possibility of match quickly deteriorates as the dimensionality of the DS is

increased.

On the other hand, two things are supportive: first, for the purposes of

evolutionary computation, an exact match may not be required. An already

evaluated solution that is “close enough” to the one requested by the EA may be

totally satisfying. Omitting details, this is equivalent of requiring two persons to be

born on the same week of the year, rather than on exactly the same day. Thus, the

effective size of the DS is reduced to 52 (from 365) and it can be derived that only 9

persons are required (instead of 23) to reach a 50% possibility of a “relaxed-criteria

match”.

The second thing in favour is that the solutions requested by the EA are hardly

random. On the contrary, as the evolution progresses, the requested solutions tend to

congest in the promising areas of the DS, thus increasing the possibility of match.

5

Omitting details, this is equivalent of selecting people to fill the group that come

from a certain region where it is known that most births occur in August.

It will be demonstrated that, indeed, the DS is more congested than one might

think, should we choose to remember all evaluated solutions and relax the match

criteria. In fact, the problem is not finding matches but restricting their number

before they obscure the EA’s capability of differentiating between adjacent solutions

when focusing in the promising areas of the DS.

It is worth noting that an EA featuring the Registrar with exact match criteria is

actually a non-revisiting version of the simple EA, because the objective values of

already visited points are not evaluated but rather provided by the registry. In

accordance with the No Free Lunch theorem [22] and the reasoning in [17], this

suggests that the performance of the EA with the Registrar is always superior (or at

least equal) to the one of the simple EA. Indeed, since the same sequence of

potential solutions is encountered, any given point of the common evolution is

reached by the simple EA with more (or at least equal) function evaluations. On the

other hand, as the match-criteria are relaxed, the number of avoided function

evaluations is increased but the evolution is no longer common. Nevertheless it will

be shown that, for a given problem, the overall performance of the EA with the

Registrar may be tremendously superior to the one of the simple EA.

In illustration, the Registrar will be implemented with SGA. In this study, a

limited set of four representative test functions is employed as well as two levels of

problem dimensionality, namely 10 and 30 variables. Both genotypic and

phenotypic similarity criteria are examined. Based on the results, proof of concept is

established and the potential of the proposed approach is demonstrated.

3 The Registrar

For our purposes, we will examine single-objective optimization. Typically, the EA

passes the individual that needs to be evaluated as a by-reference argument to a

dedicated subroutine. Note that any modification of by-reference arguments is

reflected to the caller routine. The subroutine calculates the objective value and

returns it to the EA. Our Registrar operator is a fully-encapsulated simple piece of

code that is inserted in between, as shown schematically in Figure 1.

When a function evaluation is requested, the operator scans the registry for

possible matches based on current similarity criteria. If one or more matches are

found, the Registrar replaces the individual by its best match. This replacement is

reflected to the actual population of the EA. The Registrar also extracts the

corresponding objective value and returns it to the EA, bypassing the subroutine.

Thus, a function evaluation is avoided. If no satisfactory matches are found, the call

is forwarded to the subroutine for evaluation. Then, the result is intercepted before it

is returned to the EA and stored into the registry, together with the associated

individual. The memory requirements for storing the individuals and the

corresponding objective values are easily accommodated by modern personal

computers. Note that the Registrar does not make use of the random number

generator.

6

Figure 1: Registrar operator

4 Implementation

The Registrar will be implemented with SGA. The details of the test functions are

summarized in the Appendix. It is stressed that our aim is neither to examine the

performance of the SGA itself nor to assess whether the chosen parameters are the

best for a given problem. In each case, we choose commonly used parameters and

seek to examine solely the effect of introducing the Registrar into the SGA. All test

cases refer to the best individual ever found and they are based on a series of 50

independent runs using the same sequence of 50 different seeds. The 10 best and 10

worse runs are ignored and the results produced herein are the mean values of the

remaining 30 runs.

4.1 SGA

SGA is implemented herein, which can be described by the following pseudo-code:

1. Initialize the population of individuals (chromosomes).

2. Calculate the fitness of each individual in the population.

3. Select individuals to form a new population according to each one’s fitness.

4. Perform crossover and mutation.

5. Repeat steps (2) to (4) until some condition is satisfied.

Unless stated otherwise, the parameters of SGA are taken as follows [23]: gene

length Lg=10 bits; population size P=100; single crossover with probability 0.7 ;

jump mutation probability 1/P; creep mutation probability Lc/Np/P (Np=number of

variables); biased roulette wheel selection and elitism with one individual.

7

4.2 Match criteria defined by genotype

The first implementation of the Registrar with SGA employs match criteria that are

formed in genotypic terms (RegG). If two chromosomes cA and cB differ in (at most)

a certain number of corresponding bits, then there is a “match”. The number of

different corresponding bits D (i.e. the Hamming distance) is evaluated as:

, ,

1

cL

A i B i

i

D c c
=

= −∑ (1)

where, cA,i, cB,i = i
th

 bit of chromosome cA and cB, respectively. Thus, the

normalized relaxed-match criterion can be expressed as:

cD MDB L≤ × (2)

where, MDB= maximum different bits fraction. To draw some initial conclusions,

we examine four representative test functions with Np=10 variables, 10 bits each.

Three levels of MDB are considered, namely MDB=0%, 5% and 10% (RegG/0.00,

RegG/0.05 and RegG/0.10, respectively). Since Lc=100 bits, these correspond to no

different bits (exact match), 5 and 10 different corresponding bits, respectively.

Figure 2 shows the mean performance, where the Y axis (i.e. the objective value)

is drawn in logarithmic scale. When exact matches are required (RegG/0.00), a small

increase in performance is noticed with regard to the simple SGA without Registrar

(NoReg). However, this includes the elite chromosome as well as the chromosomes

that were not altered by crossover and mutation. It is worth noting that the evolution

of each run of RegG/0.00 is identical to the one of NoReg, provided that the same

seed is used. In this case, the gain is exactly equal to the virtual function evaluations

that were provided by the registry. As the match criteria are relaxed, a consistent

pattern in the performance is observed, i.e. a significantly increased initial

performance followed by stagnation. The more relaxed are the match criteria, the

more increased is the initial performance and the faster stagnation is observed.

Although the increased performance displayed in Figure 3 is significant, it comes

at a cost. In particular, RegG/0.10 at some point struggles to find chromosomes that

have no matches within the registry. Although the number of total evaluations (=

actual evaluations + virtual evaluations from the registry) is increasing normally,

practically all of them come from the registry. This results into excessive

computational cost without end; in addition, stagnation is observed as the algorithm

cannot focus into the promising areas of the DS.

The obvious remedy is the adaptive reduction of the MDB, i.e. the tightening of

the match criteria. Ultimately, when MDB=0, exact matches are sought which

cannot be but beneficial [17]. A simple rule is implemented herein: begin evolution

with an initial maximum different bits fraction IMDB; whenever the rate of virtual

over total evaluations exceeds a maximum rate MR, multiply the current MDB with

a number MLT in the range (0,1) to reduce it. In order to maintain encapsulation of

the code, we measure the rate of virtual over total evaluations fully within the

8

Registrar. This is accomplished using an integer array R of fixed size LR. Each time

a function evaluation is requested by the EA, the current position in the array is

increased by one, or reset to the beginning of the array if it has reached its end. A

unity is assigned at the current position if the function evaluation was virtual, a zero

otherwise. The current rate CR of virtual over total evaluations is given by:

 1

RL

i

i

R

R

CR
L

==
∑

 (3)

Herein, LR=100 and the array R is reinitialized whenever CR≥MR, in order to

avoid multiple consecutive triggering of the MDB reduction.

The adaptive reduction scheme allows the use of very relaxed initial match

criteria without fear of entrapment into endless virtual evaluations. In illustration,

Figure 3 shows the mean performance using IMDB=25%, MR=99% and MLT=99%

(RegG/0.25/0.99/0.99, respectively), as compared to using a constant MDB=10% or

no Registrar at all.

Figure 2: Mean best with genotypic match criteria in problems with 10 variables x

10 bits, (a) F1 Sphere (b) F2 Schwefel (c) F3 Ackley (d) F4 Rastrigin

9

Figure 3: Mean best with genotypic match criteria and adaptive MDB reduction (10

variables x 10 bits), (a) F1 Sphere (b) F2 Schwefel (c) F3 Ackley (d) F4 Rastrigin

Figure 4: Mean reduction of function evaluations with RegG/0.25/0.99/0.99 for the

same level of objective value reached by NoReg (10 variables x 10 bits)

10

Figure 5: Mean best with genotypic match criteria and adaptive MDB reduction (30

variables x 10 bits), (a) F1 Sphere (b) F2 Schwefel (c) F3 Ackley (d) F4 Rastrigin

Figure 6: Mean reduction of function evaluations with RegG/0.25/0.99/0.99 for the

same level of objective value reached by NoReg (30 variables x 10 bits)

11

The adaptive reduction scheme seems to impede progress in some parts, when

measured strictly by function evaluations. However, it is highly recommended

because it greatly reduces the computational cost of each run and ensures its

completion. Figure 4 shows the mean reduction of function evaluations achieved

when using RegG/0.25/0.99/0.99 and Np=10 (see Figure 3). Regarding the case of

function F2 (Schwefel), it is observed that the reduction reaches 95%, i.e., the same

level of best objective value is achieved using only 5% of the function evaluations.

Applying the proposed methodology into problems of high dimensionality

(Np=30 variables, 10 bits each), one also observes significantly increased

performance (Figure 5).

Figure 6 shows the mean reduction of function evaluations achieved when using

RegG/0.25/0.99/0.99 with Np=30 (shown in Figure 5). It is observed that a reduction

of function evaluations in the range of 70% to 90% was achieved for the four 30-

variable test functions (Lc=300).

4.3 Match criteria defined by phenotype

The second implementation of the Registrar refers to SGA with match criteria that

are formed in phenotypic terms (RegP). Herein, the “distance” D between two

chromosomes cA and cB is defined as the sum of the normalized “city block

distances” (or normalized Manhattan distances) of their corresponding phenotypic

values:

, ,

1

pN
A i B i

i i i

x x
D

U L=

−
=

−∑ (4)

where, xA,i, xB,i = i
th

 variable of chromosome cA and cB, respectively and Ui, Li =

upper and lower bound of variable xi, respectively. When D is smaller than a certain

threshold, then there is a match. Thus, the criterion can be written as:

 pD MDST N≤ × (5)

where, MDST= mean distance. An adaptive MDST reduction method is

employed, in accordance with the case of genotypic match criteria. We begin

evolution with an initial mean distance IMDST ; whenever the rate of virtual over

total evaluations exceeds a maximum rate MR , we multiply the current MDST with

a number MLT in the range (0,1) to reduce it.

12

Figure 7: Mean best with phenotypic match criteria and adaptive MDST reduction

(10 variables x 10 bits), (a) F1 Sphere (b) F2 Schwefel (c) F3 Ackley (d) F4

Rastrigin

It was observed that very strict match criteria lead to small improvement in

performance, similar to the exact-match case of Figure 2. On the other hand, a very

aggressive configuration (IMDST=25%, MR=99%, MLT=99% =

RegP/0.25/0.99/0.99, respectively), which produced excellent results when used

with RegG, is clearly inappropriate in this case (Figure 7). A less aggressive

configuration was also employed (RegP/0.25/0.15/0.95) which resulted in increased

performance with respect to NoReg. In any case, the increase is much smaller

compared to RegG/0.25/0.99/0.99 (Figure 3). This is even more pronounced in the

case of 30pN = (Figure 8).

13

Figure 8: Mean best with phenotypic match criteria and adaptive MDST reduction

(30 variables x 10 bits), (a) F1 Sphere (b) F2 Schwefel (c) F3 Ackley (d) F4

Rastrigin

5 Conclusions

This study is part of an ongoing research which examines the introduction of full

memory into EAs. A fully encapsulated operator, dubbed “the Registrar”, is

proposed which is placed between the EA and the objective function. The Registrar

records the results of all function evaluations and selectively replaces the individuals

requested by the EA with similar ones taken from the registry, based on adaptive

match criteria. Thus, function evaluations are avoided in an aggressive manner.

Preliminary results from the application of the Registrar with SGA clearly show

that:

(a) the recording and exploitation of the results of all function evaluations is

feasible for most real-life problems using modern-day computer systems

and

(b) great improvement in performance may be observed.

For the case of SGA, great improvement in performance was observed when

defining the match criteria in the genotypic level, in contrast to defining them in the

phenotypic level.

14

Further research will be focused in examining an extended test function test-bed

for SGA, as well as real-life engineering problems. Focus will also be given to the

implementation of the Registrar into other EAs.

6 Appendix: Test Functions

The test functions employed in this study are presented below. The corresponding 2-

dimensional graphs are shown in Figure 9.

6.1 F1: Sphere

()

{ }
() ()

2

1

5.12 5.11 1,...,

min 0,0,...,0 0

pN

i

i

i p

f x

x i N

f f

=

=

− ≤ ≤ ∀ ∈

= =

∑x

x

 (6)

6.2 F2: Schwefel

()

{ }
()

1 1

5.12 5.11 1,...,

min () 0,0,...,0 0

pp NN

i i

i i

i p

f x x

x i N

f f

= =

= +

− ≤ ≤ ∀ ∈

= =

∑ ∏x

x

 (7)

6.3 F3: Ackley

() ()

{ }
() ()

2

1 1

1 1
20exp 0.2 exp cos 2 20

5.12 5.11 1,...,

min 0,0,...,0 0

p pN N

i i

i ip p

i p

f x x e
N N

x i N

f f

π
= =

   
 = − − − + +      

− ≤ ≤ ∀ ∈

= =

∑ ∑x

x

 (8)

6.4 F4: Rastrigin

() ()

{ }
()

2

1

10cos 2 10

5.12 5.11 1,...,

min () 0,0,...,0 0

pN

i i

i

i p

f x x

x i N

f f

π
=

 = − + 

− ≤ ≤ ∀ ∈

= =

∑x

x

 (9)

15

Figure 9: 2-dimensional graphs of test functions: (a) F1 Sphere (b) F2 Schwefel (c)

F3 Ackley (d) F4 Rastrigin

References

[1] A.E. Eiben, J. E. Smith, “Introduction to evolutionary computing”, Springer,

New York, 2003.

[2] J.H. Holland, “Adaptation in natural and artificial systems”, University of

Michigan Press, Ann Arbor, MI, 1975.

[3] J.A. Vasconcelos, J.A. Ramírez, R.H.C. Takahashi, R.R. Saldanha,

“Improvements in Genetic Algorithms”, IEEE Transactions on Magnetics,

37(5), 3414-3417, 2001.

[4] J. Kennedy, R.C. Eberhart, “Particle swarm optimization”, in “Proceedings

IEEE International Conference on Neural Networks”, 1942-1948, 1995.

[5] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary

computation”, Soft Computing, 9, 3–12, 2005.

[6] J-F.M. Barthelemy, R.T. Haftka, “Approximation concepts for optimum

structural design - a review”, Structural Optimization, 5, 129–144, 1993.

16

[7] P.Y. Papalambros, “Optimal design of mechanical engineering systems”,

ASME Journal of Mechanical Design, 117, 55–62, 1995.

[8] T.W. Simpson, J.D. Peplinski, P.N. Koch, J.K. Allen, “Metamodels for

computer-based engineering design: Survey and recommendations”,

Engineering with Computers, 17(2), 129-150, 2001.

[9] R.E. Smith, B.A. Dike, S.A. Stegmann, “Fitness inheritance in genetic

algorithms”, in “Proceedings ACM Symposium on Applied Computing”,

345-350, 1995.

[10] R. Xu, D.C. Wunsch II, “Survey of clustering algorithms”, IEEE Transactions

on Neural Networks, 16(3), 645-678, 2005.

[11] V.K. Koumousis, C.P. Katsaras, “A saw-tooth Genetic Algorithm combining

the effects of variable population size and reinitialization to enhance

performance”, IEEE Transactions on Evolutionary Computation, 10(1), 19-28,

2006.

[12] A.E. Charalampakis, V.K. Koumousis, “Identification of Bouc-Wen hysteretic

systems by a hybrid evolutionary algorithm”, Journal of Sound and Vibration,

314, 571-585, 2008.

[13] M.L. Mauldin, “Maintaining diversity in genetic search” in “Proceedings

National Conference in Artificial Intelligence”, 247-250, 1984.

[14] S. Ronald, “Preventing diversity loss in a routing genetic algorithm with hash

tagging”, in “Complex Systems: Mechanism of Adaption”, R. Stonier and

Xing Huo Yu, (Editors), Amsterdam, IOS Press, 133-140, 1994.

[15] R.J. Povinelli, X. Feng, “Improving genetic algorithms performance by

hashing fitness values”, in “Proceedings of Artificial Neural Networks in

Engineering”, 399–404, 1999.

[16] J. Kratica, “Improving performances of the genetic algorithm by caching”,

Computers and Artificial Intelligence, 18(3), 271–283, 1999.

[17] S.Y. Yuen, C.K. Chow, “A Genetic Algorithm that adaptively mutates and

never revisits”, IEEE Transactions on Evolutionary Computation, 13(2),

454-472, 2009.

[18] C.D. Rosin, R.K. Belew, “New methods for competitive coevolution”,

Evolutionary Computation, 5(1), 1-29, 1997.

[19] A. Acan, Y. Tekol, “Chromosome reuse in Genetic Algorithms”, in

“Proceedings GECCO 2003”, 695–705, 2003.

[20] B. Prime, T. Hendtlass, “Mechanisms for evolutionary reincarnation” in

“Proceedings ACAL 2007”, 245–256, 2007.

[21] E.H. McKinney, “Generalized birthday problem”, American Mathematical

Monthly, 73(4), 385-387, 1966.

[22] D.H. Wolpert, W.G. Macready, “No free lunch theorems for optimization”,

IEEE Transactions on Evolutionary Computation, 1(1), 67–82, 1997.

[23] D.L. Carroll, FORTRAN Genetic Algorithm (GA) Driver. [Online]. Available:

http://www.cuaerospace.com/carroll/ga.html, 1999.

