
1 

Abstract 
 

The Binary Particle Swarm Optimization (BPSO) algorithm has been implemented 

with success in the Reliability Based Optimal Design (RBOD) of truss structures. In 

this study, a BPSO implementing time-varying schemes for the inertia factor and 

maximum velocity is used for the same purpose. Various schemes are examined and 

the performance is compared against the simple BPSO. 

 

Keywords: Reliability Based Optimal Design, Particle Swarm Optimization, time-

varying parameters, truss structures. 

 

1  Introduction 
 

Particle Swarm Optimization (PSO) is a population-based stochastic optimization 

technique suitable for global optimization with no need for direct evaluation of 

gradients. The method mimics the social behavior of flocks (swarms) of birds and 

insects [1] and satisfies the five axioms of swarm intelligence, namely; proximity, 

quality, diverse response, stability and adaptability [2]. The algorithm searches the 

Design Space (DS) by adjusting the trajectories of individuals, called “particles”, 

viewed as moving points in the DS. These particles are attracted towards the 

positions of both their personal best solution and the best solution of the swarm in a 

stochastic manner [3]. 

A discrete (binary) version of the algorithm was subsequently introduced [4]. In 

Binary PSO (BPSO), a chromosome defines a candidate design. Each chromosome 

contains the necessary information to define a candidate solution of the problem. 

The main difference of the BPSO as compared to the standard version, is in the use 

of the information contained in the velocity vector. In PSO the velocity vector is 

used to calculate the particle’s future position. In BPSO the velocity is used to 

calculate the probability of the bits of the chromosome to be set either to 0 or 1. 

Thus, velocity is interpreted as a probability or entrapment threshold. As this 
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threshold increases, the bit-flip probability decreases and the bit value is locked to 

either 0 or 1, depending on the sign of the velocity parameter. The BPSO is used 

mainly in problems of combinatorial nature [5], [6]. Recently, the BPSO was 

implemented in the area of structural optimization for the Reliability Based Optimal 

Design (RBOD) of truss structures [7]. 

The RBOD has attracted the attention of many researchers [8]. In RBOD, part of 

the constraints and/or the objective function is of a probabilistic nature. Reliability 

analysis provides a rational basis to quantify safety. A structure is considered safe 

when it will not fail under foreseeable demands and it is unlikely to fail under 

extraordinary demands or circumstances [9]. In reliability analysis, the yes/no 

(acceptable/non-acceptable) concept of current codes of practice, with regard to the 

requirements of a design, is substituted by a probability measure for a particular 

component of the structure to behave in an unacceptable manner (failure). The 

advantage of RBOD with respect to typical optimization processes, which are based 

on the requirements of structural codes and regulations (Level 1 methods), is its 

ability to overcome the problem of optimal designs with reduced reliability. This 

often occurs in the case of typical optimization. Wen [10], [11] has demonstrated 

that redundancy factors, related directly to the acceptable risk, are required to obtain 

designs of the same level of safety and economy. 

Due to its high computational cost, RBOD has only become practical with the 

advancement of computing hardware [12], [13], [14]. Dimou and Koumousis [15] 

implement a competitive GA algorithm for the RBOD of truss structures. Youn and 

Choi [16] address the problem of maximizing the safety of a vehicle in side impacts, 

while the weight of the safety cell is kept below a certain threshold value. Foley et al. 

[17], [18] present a state-of-the-art overview of performance-based methodologies in 

the design of steel moment resisting frames subject to seismic loading while 

incorporating risk in structural design.  

In this work, the RBOD of two statically determinate planar trusses is examined, 

namely of a 25-bar truss and a 30-bar arch. A modified BPSO is employed for the 

optimization process. The Design Variables (DVs) are the cross-sectional areas Ai of 

the groups, which control the size of the truss, and the heights hj and lengths lk 

which control its shape. The problems under examination are modeled as serial 

systems of partially correlated groups of elements. The Random Variables (RVs) are 

the load, the yield-critical stress and the cross sections of the elements. The 

modifications introduced in the BPSO algorithm are inspired by the work of Fourie 

and Groenwold [19]. These modifications are mainly concerned with the 

introduction of time-varying schemes for the inertia parameter and the maximum 

velocity. The results of the proposed schemes are compared with the results of the 

standard BPSO. 

 

2  Modified Binary PSO 
 

In BPSO, the value of the i
th

 bit is given as [4]: 
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where the sigmoid function sig(vk
i
) varies in the range of [0,1] and r

i
k+1 is a random 

value uniformly distributed in the range [0,1]. The velocity vector is used to derive 

the probability of the i
th

 bit of the chromosome to be equal to 1. An extended 

analysis on the behavior of BPSO and its derivations can be found in Clerc [20]. The 

velocity vector is given as: 

 

 1 1 1 2 2( ) ( )d d d d d

k k k k k g kw c c+ = + − + −v v r p x r p x� �  (2) 

 

where, wk is the inertia factor at time instant k; c1, c2 are the cognitive and social 

parameters of the algorithm, respectively; p
d

k is the best ever position vector of 

individual d at time instant k; pg is the best ever position vector amongst all 

individuals at time instant k; r1, r2 are vectors of random variables with uniform 

distribution in the interval [0,1] and the (o) operator indicates element-by-element 

multiplication. The components of the velocity vector are bounded by a maximum 

velocity vmax. The vmax acts as a maximum entrapment probability, forcing the bit 

value to either 0 or 1. Every velocity component of d

kv  is examined against the 

maximum velocity and the following correction is implemented if needed: 

 

 ( ) { }1, max 1, 1, max
sign 1,...,d d d

k i k i k i DV
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where NDV is the number of DVs of the problem and sign(_) is the signum 

function.  

To improve the performance of the BPSO, a series of modifications are 

implemented. These are proposed by Fourie and Groenwold [19]. The resulting 

optimization scheme is designated as Enhanced BPSO (EBPSO) and is implemented 

as follows: 

• If the best solution found in the whole swarm is not improved over a period of h 

consecutive steps, then it is assumed that the current values for the inertia factor 

and maximum velocity are not suitable. For this reason, both of them are modi-

fied as follows: 

 

 ( ) ( )max max

1 1
If ( ) ( )  ,   
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where ( )_f  and ( )_g  are arbitrary functions. 

• The craziness operator assigns a random velocity vector to an individual resulting 

in its moving away from the swarm and thus exploring other areas. In BPSO this 

operator resembles the massive mutation operator found in some versions of the 

Genetic Algorithms (GAs). The operator is activated with a probability Pcr as fol-

lows: 



 

 max

1 1 1If randomly assign  with   particle cr k k kr P d+ + +< ⇒ < ≤ ∀v 0 v v  (5) 

 

where r is a random variable with uniform distribution in the interval [0,1]. 

• The algorithm employs both an elite particle and an elite velocity. The individual 

with the worst performance is moved to the best ever position of the swarm: 

 

 pe

g=x p  (6) 

 

In addition, if the velocity vector v
d

k resulted in an improvement of pg, then: 

 

 1 3 3 d pe

k g c+ = +x p r v�  (7) 

 

where, v
pe

=v
d
k, c3 is a parameter of the algorithm and r3 is a vector of random 

variables with uniform distribution in the interval [0,1].  

The original vmax is not controlled by parameter γ  as in [19], but its range is 

selected following other recommendations found in literature [7]. This is due to the 

fact that velocity in BPSO is interpreted as a probability and not as a vector that 

determines the future position of a particle, as in the classical PSO. 

 

3  Reliability Based Optimal Design 
 

The BPSO, as well as other Evolutionary Algorithms like GAs, are particularly 

suitable for computationally intensive and mathematically hard problems. The main 

reason is that they only require payoff information. The RBOD is a computational 

intensive and mathematically hard problem even in its simplest form. As such, it is 

suitable to reveal the strengths and weaknesses of BPSO and its modifications. 

The objective of the problem is to minimize the sum of the construction cost and 

the cost of potential structural failure [10], [11]. The DVs are the cross-sectional 

areas Ai of the member groups (taken from a list of available tubular cross sections), 

as well as the heights hj and lengths lk, which control the size and shape of the truss. 

The constraints consider the failure probabilities of both the elements and the 

structure. The optimization problem is formulated as follows: 
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where Nt is the number of truss elements, Vm is the volume of the m
th

 element, 

Cmat and Cfail are the structural cost per unit volume and the cost of potential 

structural failure, respectively, Pf,n and Pn,lim are the failure probabilities of the n
th
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element and its maximum failure probability, respectively, and Pf,s and Ps,lim are the 

failure probability and its limit value for the entire structure. Note that no 

construction constraints are taken into account. 

The failure probability for an element is defined as the probability of the ratio of 

resistance over action obtaining values below unity (Pf,n=Pr(Rn/Sn≤1)). For the 

problems examined herein, every member force Sn is given as the load acting on the 

structure multiplied by an appropriate coefficient for each element (Sn=fn(hj,lk)·P). 

For statically determinate structures, the function fn(hj,lk) depends only on the 

geometry of the design and the load pattern. The expressions listed in EC3 are 

employed for the tensile and compressive-buckling resistance. The tensile resistance 

is given as the cross sectional area multiplied by the tensile yield stress (Rn=σy·An). 

The compressive resistance is given as the cross-sectional area multiplied by the 

reduced critical stress in compression. The latter is given as the compressive yield 

stress multiplied by a reduction factor χ accounting for buckling, based on the 

provisions of EC3 (Rn=χn·σy·An).  

The RVs of the problem are the load P, the yield stress of the material σy, the 

cross sectional areas Aj of all groups of bars and the reduction factors χ accounting 

for buckling for all groups of bars. All RVs are considered as log-normally 

distributed; thus, the problem of calculating the failure probability of an element has 

an analytical solution [15]. The average and coefficient of variation (C.O.V.) of the 

RVs are summarized in Table 1. The truss elements form four groups, namely the 

lower and upper chords, the vertical struts and the diagonal members. In every group, 

the elements are considered as fully correlated; thus, since every group is modeled 

as a serial system of elements, the failure probability of the group is derived from 

the maximum of the failure probabilities of the members of the group. The structural 

failure probability is obtained as the average of the Ditlevsen bounds of the 

corresponding series of correlated groups.  

Two examples are examined which cover the structural behavior of a wide range 

of statically determinate truss structures, namely a simply supported 25-bar truss 

(Fig. 1) and a 30-bar 3 hinge arch (Fig. 2) [7]. The data regarding the DVs of the 

problem is presented in Table 2. 

For the 25-bar truss, the total span length is L=10m. The number of DVs for this 

problem is equal to 13. Four DVs control the size of the truss by selecting the cross-

section Ai of each group. Seven DVs are used to determine the hj of the truss and 

two DVs are used for the span lengths lk that control the shape of the truss. For the 

DVs controlling the Ai and hj, 4 bits are used to describe each DV whereas for the 

lengths 3 bits are used. The number of bits needed to fully describe a design is equal 

to (4+7)·4+2·3=50; thus, the multiplicity of the DS enumerates 2
50

 designs. A 

candidate design for the 25-bar truss is described as follows: 

 

2 1 3 2

Cross Sections

Diagonal h =h +0.50mL. Chord U Chord Strut 0.25m h =h +0.025m h
Φ152.4x4.0Φ42.7x3.2 Φ60.1x3.2 Φ33.7x3.2

0011 0101 0010 1111 0000 1111 0001 0100 0010 1110 0000 000 110

0011 0101 0010 1111 0000 1111 0001 0100
↓ ↓↓ ↓ ↓ ↓ ↓ ↓

⇓

j k

4 3 5 4 6 5 7 6

Heights h Lengths l

h +0.10m h =h +0.050m h =h +0.275m h =h 2.00m 3.50m

0010 1110 0000 000 110
↓ ↓ ↓ ↓ ↓

=

 

 



For the 30-bar arch, the total span length is L=13m and the load participation 

factors {ai} depend on the shape of the structure. The number of DVs for the 30-bar 

arch is equal to eleven (four control the size of the truss and seven control its shape). 

For the DVs controlling the Ai and hj, 4 bits are used to fully describe each DV 

whereas for the lk 5 bits are used. The number of bits needed to fully describe a 

design is equal to (4+4)·4+3·5=51; thus the multiplicity of the DS enumerates 2
51

 

designs. A candidate design for the 30-bar arch is described as follows: 

 

2 11 3 2

Cross Sections

h =h +0.775m L. Chord U Chord Strut Diagonal h =1.000m h =h -0.150m
Φ76.1x3.2 Φ26.7x2.9 Φ82.5x3.2 Φ21.3x2.8

0110 0001 0111 0000 0000 1111 0001 0011 0001110000 01011

0110 0001 0111 0000 0000 1111 0001 0011
↓↓ ↓ ↓ ↓ ↓ ↓

⇓

j k

4 3

Heights h Lengths l

h =h -0.300m 3.15m 3.30m 2.55m

00011 10000 01011
↓ ↓ ↓ ↓

 

 

25-bar truss 30-bar arch 

Random Variable E [_] C.O.V Random Variable E [_] C.O.V 

Load (kN) 30.0 12.5% Load (kN) 30.0 25.0% 

Yield Stress (MPa) 275.0 7.0% Yield Stress (MPa) 275.0 7.0% 

Cross section (cm
2
) Variable 10.0% Cross section (cm

2
) Variable 4.0% 

buckling factor χ Calculated 10.0% buckling factor χ Calculated 5.0% 

Table 1: RVs for the problems examined 

 

 

Fig. 1. 25-bar Truss (Load and DVs) 

 

 
Fig. 2. 30-bar Arch (Load and DVs) 

a1·P 
a2·P 

a3·P h1 

h2 

h4 

l1 l2 l3 

L 
a4·P 

a1+2·(a2+a3+a4)=1 

h3 

L 

h1 
h2 

 h3 

h4 

h5  h6 h7 

l2 
l1 

P 
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Coding and decoding the binary expressions of all particles is performed at every 

time step to evaluate the performance of every candidate design, as determined by 

the optimization problem of eqs. (8) and (9).  

 
CS Name d  t CS Name d  t  CS Name d  t  CS Name d  t  

Φ21.3x2.8 21.3 2.8 Φ48.4x3.2 48.4 3.2 Φ88.9x3.2 88.9 3.2 Φ127.0x4.0 127.0 4.0 

Φ26.7x2.9 26.7 2.9 Φ60.1x3.2 60.1 3.2 Φ101.6x3.6 101.6 3.6 Φ133.0x4.0 133.0 4.0 

Φ33.7x3.2 33.7 3.2 Φ76.1x3.2 76.1 3.2 Φ108.0x3.6 108.0 3.6 Φ139.7x4.0 139.7 4.0 

Φ42.7x3.2 42.7 3.2 Φ82.5x3.2 82.5 3.2 Φ114.3x3.6 114.3 3.6 Φ152.4x4.0 152.4 4.0 

25-bar truss 30-bar arch 

h1 
0.25m to 0.50m Step=0.05m  

0.50m to 1.50m Step=0.10m 
h1 

From 1.00m to 1.40m Step=0.025m  

From 1.40m to 2.15m Step=0.050m 

h2 
0.00m to 0.30 Step=0.025m add to h1 

0.30m to 0.50 Step=0.050m add to h1 
h2 0.00m to 0.775 Step=0.025m, add to h1 

h3 Values as in h2, add to h2 h3 -0.175m to 0.60 Step=0.025m, add to h1 

h4 Values as in h2, add to h3 h4 -0.375m to 0.40 Step=0.025m, add to h1 

h5 0.00m to 0.30 Step=0.025m L1 3.00m to 4.55m Step=0.05m 

h6 Values as in h5, add to h5 L2 2.50m to 4.05m Step=0.05m 

h7 Values as in h5, add to h6 L3 2.00m to 3.55m Step=0.05m 

L1, L2 From 2.00m to 3.75m Step=0.25m   

Table 2. Cross-Sections (CS), heights (hj) and lengths (lk)  

 

The ratio of costs is set to Cfail/Cmat=200000 and Pn,lim=10
-6

 and Pstr,lim=5·10
-6

. 

These values correspond to reliability indexes of βn,lim=4.753 and βstr,lim=4.417 

respectively. The βstr,lim is taken equal to the proposed reliability index in the draft of 

the Probabilistic Model Code [21] for structures “with small relative cost of safety 

measure and moderate consequences of failure”. The selection of more stringent 

limits for the elements is dictated by the type of structure examined. A statically 

determinate structure has no mechanism to redistribute the acting stresses after 

failure of any of its elements and its probability of failure is greater than or at least 

equal to the probability of failure of its most likely to fail element [7]. 

 

4  Time-varying schemes for parameters α & β 
 

With respect to the arbitrary functions of eq. (4), the following schemes are 

examined: 

 

  1 1If ( ) ( )  then modify  and g g k kk k h
OF OF w + +−

=p p v  (10) 

 

The modifications are performed as follows: 

• In the case of the simple ascending or descending scheme (EBPSO#1) as: 

 

 max max

1 1 ,   k k k kw a w β+ += =v v  (11) 

 

with 1a <>  and 1β <> , which define either an increasing or decreasing scheme. 

• In the case of the two periodical schemes (EBPSO#2, EBPSO#3) as: 
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where maxv  and minv  are the vectors containing the maximum and minimum 

values of the maximum velocity, 0w  is the initial value of the inertia factor and 
max

kv ր  and max

kv ց  imply that the scheme is in its ascending or descending era. Eq. 

(12) defines a scheme of ascending and descending periods for the maximum 

velocity, where eq. (13) defines a scheme of descending and ascending periods for 

this parameter. 

• Finally, two schemes following the Saw-tooth GA [22] (EBPSO#4, EBPSO#5) 

are considered as: 

 

 

max max max max

1 1max

1 1

max min

1 1 0

1
 

 1

,  otherwise

k k k

k k k

k k

w a w

w w

β β+ +
+ +

+ +

 = ⋅ ≤
= = <

 = =

v v v v
v

v v

 (14) 

 
max max max min

max 1 1

1 1 max max

1 1 0

 1
,  otherwise

k k k

k k k

k k

w a w
w w

β
β+ +

+ +
+ +

 = ⋅ >
= = <

= =

v v v v
v

v v
 (15) 

 

In Fig. 3, the varying schemes for the inertia factor and the maximum velocity 

described in eqs (12) to (15) are presented. 

 

4  Parametric studies – numerical results 
 

Numerous parametric studies were performed in order to obtain an in-depth 

knowledge of the algorithm’s behaviour. Regarding the swarm size, the following 

values are considered: Ns = {50, 60, 70, 80, 90, 100}. In addition, the following 

combinations of the cognitive and social parameter are considered: {[c1, 

c2]}={[1.5,2.5], [1.75,2.25], [2.0,2.0]}, in accordance with the recommendations of 



9 

[5] and [7]. The maxv  and minv  vectors are given as [ ]min 2.3, 2.3,..., 2.3=v  and 

[ ]max 5.6,5.6,...,5.6=v , following the recommendations found in [7]. For the 

parameters α and β the following values are considered { }1.01,0.99,0.98a = ,

{ }0.975,0.950,0.925β = . For the remaining parameters, the following values are 

considered; 0.22crP = , 3h = , { }0 0.8,0.9,1.0w =  and 
3 1.30c = . 

 

  

  
Fig. 3. Varying schemes for the w (red line 1a < ) and the vmax (blue line 1β < ) – 

EBPSO#2 to EBPSO#5 from top to bottom and left to right 

 

In total, 2484 combinations of parameters of the BPSO and EBPSO are examined 

for each truss. For valid statistics, 30 analyses with a different initial random seed 

are performed for each combination, with a total duration of 200 time steps. 

In Fig. 4, the temporal evolution of the best objective over all combinations is 

presented for both the 25-bar truss and the 30-bar arch. The results for the 25-bar 

truss are presented on the left side, whereas the corresponding results for the 30-bar 

arch are given on the right side. For the 25-bar truss, the BPSO and the proposed 

variants manage to discover the optimum solutions reported in the literature [7], [23]. 

For the 30-bar arch, the implementation of the proposed variants resulted to new 

optimal solutions overcoming the ones reported in the literature [7], [23]. The best 

overall results are observed for the EBPSO#4.  

In Fig. 5, the temporal evolution of the best objective is presented when 

performance is examined against parameter α. Contrary to the results observed for 

continuous PSO problems [24], for the problems under examination a value above 

unity gave the best results. This demonstrates the diverse character of the BPSO 

with respect to its continuous counterpart [19]. Higher values of w increase the 

importance of the original vector and, in conjunction to higher vmax values , increase 

considerably the ability of the algorithm to exploit information (as the probability of 



bit flip decreases). Note that for 1a >  in the corresponding graph at bottom – left of 

Fig. 3, the red and blue lines are synchronized. 

 

  
Fig. 4. Evolution of the best objective over all combinations 

 

  

  

  
Fig. 5. Evolution of the best objective (performance with respect to the α parameter) 
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In Fig. 6, the temporal evolution of the best objective is presented when 

performance is examined against parameter β. In the case of the 25-bar truss, the 

decrease of β results to a deterioration of performance. This is also the case for the 

30-bar arch, although to a lesser degree. 

From the results of Fig. 5 and Fig. 6, the best results are observed for 1.01a =  

and 0.975β = . Thus, from this point forward, attention is restricted to the results of 

this specific set of parameter values. 

 

  

  

  
Fig. 6. Evolution of the best objective (performance with respect to the β parameter) 

 

In Fig. 7, the temporal evolution of the mean objective of the optimum particle is 

presented. At the early stages of the optimization process (up to 40 time steps) the 

BPSO manages to keep pace with the most efficient EBPSO variants. From that 

point forward, the ability of the EBPSO for exploitation of the areas where good 

solutions reside leads to considerable improvements of performance. Moreover, a 

comparison among the proposed variants shows that EBPSO#4 manages to produce 

the best results with respect to this metric.  



In Fig. 8, the temporal evolution of the “worst” objective of the optimum particle 

is presented. This metric provides an estimate of the algorithm’s ability to overcome 

the “faith” of a far-from-optimal original pool of solutions. In BPSO, stagnation is 

observed as the temporal evolution flat-lines at about 50 time steps. On the other 

hand, all the examined variants of the EBPSO continue improving until the end of 

the optimization process. The best performance is observed by EBPSO#4 and 

EBPSO#1. 

 

  
Fig. 7. Evolution of the average objective ( 1.01a =  & 0.975β = ) 

 

  
Fig. 8. Evolution of the worst objective ( 1.01a =  & 0.975β = ) 

 

In Fig. 9, the temporal evolution of the variance of the objective of the optimum 

particle is presented. This metric provides a better insight with regard to the 

optimization process. High values indicate increased discrepancy among the results 

and this is generally considered as beneficial in the early stages of the optimization 

process. This is not the case at the end of the optimization process when low values 

of variance indicate that the algorithm is capable of producing consistent results, a 

clear indication of robustness. These phenomena are observed in the examined 

graphs. At the early stages of the optimization process the BPSO exhibits lower 

values of variance when compared to the proposed variants. On the other hand, at 

the end of the optimization process the exact opposite phenomenon is observed, as 

the BPSO exhibits the highest variance, a clear indication of entrapment in local 

optima. The EBPSO#1 and EBPSO#4 produce the best results. 
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Fig. 9. Evolution of the variance of optimum objective ( 1.01a =  & 0.975β = ) 

 

  

  

  
Fig. 10. Evolution of the best objective of the best individual (analysis with respect 

to NS – 25 bar truss) 

 

In Fig. 10 and Fig. 11, the temporal evolution of the best and average of the 

objective of the optimum particle is presented for the 25-bar truss, when 



performance is examined against the swarm size. In the case of the best objective, 

the BPSO manages to outperform the proposed variants for NS={60,90}. This is not 

the case for the average objective, where for all swarm sizes the proposed variants 

outperform the BPSO. Similar results are also obtained for the 30-bar arch. The best 

overall results are observed by EBPSO#4. 

 

  

  

  
Fig. 11. Evolution of the average objective of the best individual (analysis with 

respect to NS – 25 bar truss) 

 

5  Conclusions 
 

In this work, several variants of BPSO incorporating the enhancements proposed by 

Fourie and Groenwold [19] are implemented in the shape and size RBOD of a 25-

bar truss and a 30-bar arch. These structures define two types of structural systems 

carrying vertical loads which represent two different patterns of structural behavior. 

The results obtained from these variants are examined against the results of the 



15 

BPSO [7].  

From the results it becomes evident that the proposed modifications improve 

considerably the robustness of the algorithm and its exploitation capabilities. For 

both structures, the best results are obtained with the EBPSO#4 using 1.01a =  and 

0.975β = . Thus, the best results are observed for a saw-tooth scheme with 

gradually increasing maximum velocity and gradually increasing value of the inertia 

parameter (in synchronization).  
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