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Abstract 
 

In this paper, several variants of Differential Evolution, Particle Swarm 

Optimization and Genetic Algorithms are employed for the identification of a Bouc-

Wen hysteretic system that represents a full-scale bolted-welded steel connection. 

The purpose of this work is to assess their comparative performance in a highly non-

linear identification problem. Interesting results are produced that reveal the 

strengths and weaknesses of each algorithm. 

 

Keywords: differential evolution, particle swarm optimization, genetic algorithms, 

identification, Bouc-Wen. 
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1  Introduction 
 

In this study, the problem of identifying an unknown hysteretic system is addressed. 

The system represents a full-scale bolted-welded steel connection and identification 

is based on actual experimental data. The model structure is assumed known; in 

particular, the Bouc-Wen model [1], [2] is used which is assumed to be able to 

capture all the major system characteristics. Thus, system identification reduces to 

estimation of the unknown Bouc-Wen model parameters. Nevertheless, the problem 

remains highly non-linear; parameter estimation even of single-degree-of-freedom 

systems is not trivial, as will be demonstrated. 

Recent research by the Authors [3] has shown that Evolutionary Algorithms 

(EAs) are better suited for the task at hand. Apart from the algorithms examined in 

[3], i.e. Standard Genetic Algorithm (SGA), micro-GA (µGA), a hybrid method 

originally presented in [4] and two variants of Particle Swarm Optimization (PSO), 

three variants of another candidate algorithm, namely the Differential Evolution 

(DE), are examined herein. Comparative analysis of all results reveals interesting 

conclusions. 
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2  The Bouc-Wen model 
 

2.1 General 
 

The Bouc-Wen model is a smooth endochronic model that is often used to describe 

hysteretic phenomena. It was introduced by Bouc [1] and extended by Wen [2]. The 

versatility of the Bouc-Wen model has been demonstrated in numerous cases. It has 

been used extensively for the modeling of magnetorheological (MR) dampers [5], 

wood joints [6], welded steel joints [7] and isolation devices [8], [9], to name a few. 

An extensive survey on the implementation of the Bouc-Wen hysteretic model can 

be found in the work of Ismail et al [10]. 

 

2.2 Model formulation 
 

The equation of motion of a single-degree-of-freedom system without viscous 

damping is expressed as: 

 

  ( ) ( ) ( )m u t F t f t+ =ɺɺ  (1) 

 

where, m is the mass, u(t) is the displacement, F(t) the restoring force, f(t) the 

excitation force and overdot denotes the derivative with respect to time. According 

to the Bouc-Wen model, the restoring force is expressed as: 
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where, Fy the yield force, uy the yield displacement, a the ratio of post-yield to 

pre-yield (elastic) stiffness and z(t) a dimensionless hysteretic parameter that obeys 

the following non-linear differential equation: 
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where, A, β, γ, n are dimensionless quantities controlling the behavior of the 

model and sgn(·) is the signum function. For small values of the positive exponential 

parameter n the transition from elastic to post-elastic branch is smooth, whereas for 

large values the transition becomes abrupt, approaching that of a bilinear model. 

Parameters β and γ control the size and shape of the hysteretic loop. Parameter A 

was introduced in the original formulation of the model, but it became evident that it 

is redundant [11]. 

From Eq. (2) it follows that the restoring force F(t) can be analyzed into an elastic 

and a hysteretic part as follows: 
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 ( ) (1 )  ( )h yF t a F z t= −  (5) 

 

Thus, the model can be visualized as two springs connected in parallel (Figure 1) 

where, ke=Fy/uy and kp=a ke are the initial and post-yielding stiffness of the system. 

Further analysis regarding the response of the Bouc-Wen model can be found in 

[12]. 

 

 

Figure 1: The Bouc-Wen model 

 

2.3 Parameter constraints 
 

It has been proven [11] that the parameters of Bouc-Wen model are functionally 

redundant, i.e. there exist multiple parameter vectors that produce an identical 

response for a given excitation. This redundancy is best removed by fixing 

parameter A to unity, [5], [9], [11]. 

Parameters β and γ control the shape of hysteretic loops [2]. These parameters do 

not have clear physical meaning and affect the entire behavior in an indirect way. 

Constantinou and Adnane [13] impose a certain constraint, viz. A/(β+γ)=1, to reduce 

the model to a formulation with well-defined properties. 

Adopting the aforementioned constraints, the total number of unknown 

parameters is reduced to five, i.e. γ, n, a, Fy and uy. Moreover, following the 

recommendations of Constantinou and Adnane [13], parameter γ is bounded in the 

range of [0,1]. It is noted that additional parameters are required in cases when 

additional phenomena are taken into account, such as degradation effects e.g. [14], 

or hysteretic loops with inflexion points, e.g. [15]. 
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2.4 Identification 
 

Due to its highly non-linear nature, the identification of Bouc-Wen hysteretic 

systems constitutes a challenging problem even for the simplest single-degree-of-

freedom case. Consequently, it has been tackled by a variety of methods, such as 

Gauss-Newton [16], modified Gauss-Newton [17], Least squares [18], Simplex [19], 

Levenberg-Marquardt [19], [20], extended Kalman filters [19], [21], reduced 

gradient methods [19], Genetic Algorithms (GAs) [22], real-coded GAs [23], 

Differential Evolution [24], [25], adaptive laws [26], etc. 

Various techniques have been used to alleviate performance problems. In some 

methods [17], [21], [24], the exponential parameter of the model is fixed a priori to 

a specific value. In other cases [16], [25], a two-stage scheme is employed which 

reduces the complexity of the problem. Approximate initial ranges for the parameter 

values are determined prior to identification on the basis of phenomenological 

reasoning [22]. In some cases, other system parameters, most commonly stiffness 

and viscous damping, are generally considered known.  

 

3  Identification scheme 
 

3.1 Objective function and identification problem 
 

Herein, the normalized Mean Square Error (MSE) of the predicted time history 

ỹ(t|p) as compared to the reference time history y(t) is used as the objective function. 

When cast in discrete form, it can be expressed as: 
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where, p is the parameter vector, σy
2
 the variance of the reference time history 

and N the number of points used. The time history of the displacement and external 

force is used for force- and displacement-controlled experiments, respectively. 

Formally, the optimization problem can be stated as the minimization of the 

objective function OF(p) when the parameter vector is subjected to the following 

side constraints: 

 

 LB UB≤ ≤x p x  (7) 

 

where, xLB and xUB are vectors defining the lower and upper values of model 

parameters, respectively, and vector inequalities apply element-wise. For PSO and 

DE algorithms, a linear penalty function is implemented to constrain the particles 

within the prescribed Design Space (DS). In case an invalid parameter value occurs 

(e.g. negative n), the error handler is invoked and the particle is assigned a 

prescribed large objective function value. 
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3.2 Investigated problem 
 

The algorithms are used to identify a hysteretic system representing a full-scale steel 

cantilever beam. The experiment, namely experiment No. 5, was conducted by 

Popov and Stephen [27] at Berkeley in 1970 and refers to a WF 24 76×  beam (A36 

Grade) that was connected to a rigid column. The flanges were welded to the 

column, while the web was bolted using seven 7 8"  bolts (Figure 2a). The free end 

of the beam was subjected to a cyclic displacement pattern of increasing amplitude 

[27]. The response exhibited shows a clear non-degrading hysteretic behavior 

(Figure 2b). 

 

 

Figure 2: (a) Bolted-welded connection (b) force-displacement graph 

 

4  Algorithms 
 

4.1 SGA 
 

Genetic algorithms (GAs) are population-based evolutionary algorithms that 

originated from the work of Baricelli [28] and Fraser [29], evolved in their present 

form by Holland [30] and De-Jong [31], and later employed in a plethora of 

applications. Standard GA (SGA) is implemented and tested herein, which can be 

described by the following pseudo-code: 

1. Initialize the population of individuals (chromosomes). 

2. Calculate the fitness of each individual in the population. 

3. Select individuals to form a new population according to each one’s fitness. 

4. Perform crossover and mutation. 

5. Repeat steps (2) to (4) until some condition is satisfied. 

Implementation is based on [32]. The parameters of SGA are taken as follows: 

gene length Lg=10 bits; population size P=25 and P=50; single crossover with 

probability 0.7 ; jump mutation probability 1/P; creep mutation probability Lc/Np/P 
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(Np=5=number of variables); biased roulette wheel selection and elitism with one 

individual. 

 

4.2 µGA 
 

Micro-GA (µGA), proposed by Goldberg [33] and first implemented by 

Krishnakumar [34], is also implemented herein. The properties of µGA are (a) P=5, 

(b) Lg=10 bits and (c) single crossover. 

 

4.3 Hybrid algorithm 
 

A hybrid algorithm, presented in [4], is also employed. The hybrid method consists 

of SawTooth-GA [35], a local optimizer, namely the Greedy Ascend Hill Climber 

[1], and a bounding method that gradually decreases the size of the DS. The H2 

configuration of the hybrid method is employed [4]. 

 

4.4 Simple PSO 
 

Particle Swarm Optimization (PSO) is a stochastic algorithm suitable for global 

optimization with no need for direct evaluation of gradients. The method, introduced 

by Kennedy and Eberhart [36], mimics the social behavior of flocks of birds and 

swarms of insects. A simple PSO variant is employed herein, which is based on [3]. 

Assume that the population consists of p individuals. Within the DS, each individual 

is characterized by its position and velocity, determined at time instant k by the 

corresponding vectors xk and vk. Initially, the particles are distributed randomly in 

the box-constrained search space, as follows: 

 

 { }0
 1, 2,...,d

LB UB
d p≤ ≤ ∀ ∈x x x  (8) 

 

The position vector of individual d at the next time instant k+1 is given as: 

 

 1 1

d d d

k k k+ += +x x v  (9) 

 

where the time step ∆t between the distinct time instants is assumed to be equal to 

unity. The velocity vector v
d

k+1 is given as: 

 

 1 1 1 2 2( ) ( )d d d d d

k k k k k g kw c c+ = + − + −v v r p x r p x� �  (10) 

 

where, wk is the inertia factor at time instant k; c1, c2 are the cognitive and social 

parameters of the algorithm, respectively; p
d

k is the best ever position vector of 

individual d at time instant k; pg is the best ever position vector amongst all 

individuals at time instant k; r1, r2 are vectors of random variables with uniform 

distribution in the interval [0,1] and the (� ) operator indicates element-by-element 

multiplication. This formulation is compatible with the diverse “classical” version of 
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PSO [37]. The Simple PSO algorithm imposes no limitations with regard to the 

maximum velocity of the particles. 

In this study, the Simple PSO algorithm features the following properties: (a) 

population size p=20, (b) cognitive parameter c1=2, (c) social parameter c2=2, (d) 

constant inertia factor w=0.8. 

 

4.5 Enhanced PSO 
 

The enhanced PSO variant is based on the work of Fourie and Groenwold [38], as 

follows: 

• The initial maximum velocity of the individuals is evaluated so that in one time 

step an individual may travel up to a certain fraction of the search space: 

 

 max

0 ( )UB LBγ= −v x x  (11) 

 

• If the best solution found in the whole swarm is not improved over a period of h 

consecutive steps, then it is assumed that the velocities are large and the 

algorithm cannot locate better solutions due to overshooting. For this reason, both 

the inertia factor and the maximum velocity are decreased as follows: 

 

 max max

1 1If ( ) ( )  ,   g g k k k kk k h
OF OF w a w β+ +−

= ⇒ = =p p v v  (12) 

 

• The craziness operator assigns a random velocity vector to an individual resulting 

in its moving away from the swarm and thus exploring other regions of the search 

space. The operator is activated with a probability Pcr as follows: 

 

 max

1 1 1If randomly assign  with   particle cr k k kr P d+ + +< ⇒ < ≤ ∀v 0 v v  (13) 

 

where r is a random variable with uniform distribution in the interval [0,1]. 

• The algorithm employs both an elite particle and an elite velocity. The individual 

with the worst performance is moved to the best ever position of the swarm 

which implies a gradual shift towards the region where good solutions reside: 

 

 pe

g=x p  (14) 

 

In addition, if the velocity vector v
d

k resulted in an improvement of pg, then: 

 

 1 3 3 d pe

k g c+ = +x p r v�  (15) 

 

where, v
pe

=v
d
k, c3 is a parameter of the algorithm and r3 is a vector of random 

variables with uniform distribution in the interval [0,1]. Note the difference with 

respect to [38], where a single random variable r3 is used to multiply the whole 

vector v
pe

. 
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In this study, the Enhanced PSO algorithm features the following properties: (a) 

population size p=20 (b), cognitive parameter c1=0.5, (c) social parameter c2=1.6 (d) 

maximum velocity coefficient γ=0.4, (e) initial inertia factor w0=1.40, (f) maximum 

steps without improvement h=3, (g) fraction for the decrease of the inertia factor 

a=0.99, (h) fraction for the decrease of maximum velocity β=0.95, (i) craziness 

factor Pcr=0.22, (j) elite velocity factor c3=1.30. 

 

4.6 DE 
 

Differential Evolution (DE) is a relative new stochastic method which has attracted 

the attention of the scientific community. It was introduced by Storn and Price [39] 

and has approximately the same age as PSO. However, it bears no natural paradigm. 

An early version was initially conceived under the term “Genetic Annealing” and 

published in a programmer’s magazine [40]. The DE algorithm is extremely simple; 

the uncondensed C-style pseudocode of the algorithm spans less than 25 lines [40]. 

According to the classic version of DE, a population of p individuals is randomly 

dispersed within the DS. The population is denoted as Px,g, as follows: 

 

 
( )
( )

, , max

, , ,

,  0,1,..., 1,  0,1,...,

,  0,1,..., 1.

g i g

i g j i g p

i p g g

x j N

= = − =

= = −

xP x

x
 (16) 

 

where Px,g= array of p vectors (individuals), xi,g= Np-dimensional vector 

representing a solution, i=index for vectors, g=index for generations, j=index for 

design variables, gmax=maximum number of generations and the parentheses indicate 

an array. 

At each evolutionary step (generation), a mutated population Pv,g is formed based 

on the current population Px,g, as follows: 

 

 ( ), 0, 1, 2,i g r g r g r g
F= + −v x x x  (17) 

 

where, r0≠r1≠r2 are random indices in {0,1,…,p-1} and F is a scalar DE 

algorithm parameter. Next, a trial population Pu,g is formed, as follows: 

 

 ( ) ( )( ), ,

, , ,

, ,

,  if 0,1  or 

,  otherwise

j i g j rand

i g j i g

j i g

v rand Cr j j
u

x

 ≤ =
= = 


u  (18) 

 

where, randj is a random number with uniform distribution in (0,1) that is 

sampled anew each time, jrand is a random index in {0,1,…,p-1} that ensures that at 

least one design variable will originate from the mutant vector, and Cr is a scalar DE 

algorithm parameter in the range (0,1]. The final step is the selection criterion, 

which is greedy: 
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u u x
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In this study, three variants of DE are examined. The first variant (the classic DE) 

is denoted as DE1 or “rand/1/bin” [40], where “rand” indicates that base vectors are 

randomly chosen, “1” means that only one vector difference is used to form the 

mutated population, and the term “bin” (from binomial distribution) indicates that 

uniform crossover is employed during the formation of the trial population. The 

algorithm was described above and features the following properties: (a) p=50 

vectors, (b) F=0.5, (c) Cr=0.9. 

The second variant is denoted as DE2 or “best/1/bin” [40], where “best” indicates 

that the base vector used is the currently best vector in the population. Thus, Eq. (17)

becomes: 

 

 ( ), , 1, 2,i g best g r g r gF= + −v x x x  (20) 

 

In addition, “jitter” is introduced to the parameter F and Eq. (20) is modified as 

follows: 

 

 
( )( )

( ), , 1, 2,

0,1 0.5j j

i g best g j r g r g

F F d rand

F

= + −

= + −v x x x
 (21) 

 

where, randj is a random number with uniform distribution in (0,1) that is 

sampled anew each time and d is the magnitude of the jitter. The second variant of 

DE features the following properties: (a) p=50 vectors, (b) F=0.5, (c) Cr=0.9 (d) 

d=0.001. 

Finally, a third variant is also proposed, denoted as DE3 or “rand-best/1/bin”. 

This variant is simply a fixed mix of the DE1 and DE2. Define rb as the expected 

ratio of evaluations with “rand/1/bin” as opposed to the ones with “best/1/bin”. If 

randj < rb, then evolution is carried out according to DE1. In the opposite case, DE2 

is employed. In this study, rb=0.25 was used.  

 

5  Results 
 

The initial side constraints and reference parameter values are summarized in Table 

1. The reference values have been derived in [4] using multiple analyses without 

limitations in computational time and can be considered to be the “true” values for 

this problem. The response of the reference system is in very good agreement with 

the experimental data (Figure 2b). In order to obtain meaningful statistics, the 

identification results are the mean values of 30 independent runs. 
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 γ n a Fy [kN] uy [m]  

Initial lower bound 0.0000 1.0000 0.0000 0.0000 0.0010 

Initial upper bound 1.0000 10.0000 1.0000 1000.0000 0.1000 

Reference values 1.0000 1.3248 0.0756 420.2557 0.0142 

 

Table 1: Initial side constraints and reference values 

 

In Figure 3, the temporal evolution of the mean MSE of the best individual is 

presented for SGA, µGA, PSO, the hybrid algorithm and the classic DE (DE1). In 

terms of average performance, it is observed that the Enhanced PSO variant 

significantly outperforms the Simple PSO in the early stages of the identification 

process (Figure 3a). This is mainly due to the dynamic decrease of both the inertia 

factor and the maximum velocity that enhances the exploitation capabilities of the 

optimization algorithm. Both variants are outperformed by the DE1, particularly in 

the early stages of the optimization process. The comparison of the PSO and DE1 

with the SGA (Figure 3b) shows that the DE1 and the Enhanced PSO outperform the 

SGA with either P=25 or P=50 whereas the Simple PSO fails to do so with the case 

of SGA with P=25. An interesting observation regarding the SGA, is that the best 

average performance is observed for P=25. Both PSO variants and the DE1 

outperform the µGA (Figure 3c), which exhibits the worst performance for the 

problem under consideration. The Simple PSO is outperformed by the hybrid 

method. The Enhanced PSO exhibits a more smooth behavior and it manages to 

outperform the hybrid method at the later stages of identification. The DE1 and the 

hybrid method exhibit similar performance in the early stages of the optimization 

process but as optimization progresses the DE1 manages to outperform the hybrid 

method (Figure 3d). The hybrid method manages to produce very good results at the 

early stages of the process, as it quickly focuses into the most promising areas of the 

DS. However, as the size of the DS gets smaller, the hybrid method with the H2 

configuration becomes expensive in order to maintain the optimum parameter vector 

within bounds. Finally, the DE1 produces excellent results with a smooth transition 

towards the optimum solution as the number of examined solutions increases. This 

is partly due to the greedy character of the selection operator as it will also be 

demonstrated later in this paper. 

Regarding the Enhanced PSO algorithm, it is observed that the response of the 

identified system based on the mean results after 5000 analyses is in very good 

agreement with both the reference identified system and the actual system (Figure 

4). This is due to the very good identification of the most sensitive parameters Fy, uy 

and a which govern the bilinear skeleton of the response [4]. 

Next, the Enhanced PSO is compared to the three variants of DE (Figure 5). All 

DE variants outperformed the Enhanced PSO for this specific problem, in terms of 

both exploration and exploitation. The second variant, DE2, uses the best population 

vector as base and therefore is even more greedy than DE1. As a result, it exhibited 

impressive initial performance, as it required approximately half function 

evaluations compared to DE1 to reach the same objective function level. However, it 
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often settled to a near-optimum solution and failed to deliver the “actual” values. 

The third DE variant (DE3) exhibited the best performance, combining the 

explorative performance of DE2 and the exploitation capabilities of DE1. 

 

 

Figure 3: Comparative performance of identification algorithms (a) PSO versus DE1 

(b) PSO and DE1 versus SGA with P=25 and P=50 [30] (c) PSO and DE1 versus 

µGA with P=5 [33], [34] (d) PSO and DE1 versus hybrid method [4] 

 

 

Figure 4: Response of actual system, reference identified system and identified 

system based on mean Enhanced PSO results after 5000 analyses 
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Figure 5: Comparative performance of Enhanced PSO versus DE1, DE2, and DE3 

 

 γ n a Fy [kN] uy [m]  

Reference values 1.0000 1.3248 0.0756 420.2557 0.0142 

SGA (P=25) 0.8717 1.3372 0.0748 409.7100 0.0132 

SGA (P=50) 0.8712 1.4320 0.0735 407.0055 0.0132 

µGA 0.8342 1.4320 0.0741 402.7696 0.0128 

Hybrid Method 0.9591 1.2509 0.0654 429.0323 0.0145 

Simple PSO 0.9146 1.3037 0.0770 412.8406 0.0135 

Enhanced PSO 0.9358 1.2421 0.0715 420.9948 0.0140 

DE1 (random base) 1.0000 1.3247 0.0756 420.2586 0.0142 

DE2 (best base) 0.9540 1.2916 0.0727 419.3637 0.0140 

DE3 (mixed base) 0.9932 1.3127 0.0750 420.5492 0.0142 

 

Table 2: Identification results after 5000 analyses (mean values) 

 

The identification results after only 5000 function evaluations are summarized in 

Table 2. It is worth noting the impressive results obtained by DE1, which has 

practically identified the “actual” parameter values. This is not the product of 

favorable balancing of estimations around the reference value but rather of 

impressive algorithm robustness. This conclusion is derived from Table 3, which 

summarizes the coefficients of variation after 5000 function evaluations. This 

implies that fine-tuning, unnoticeable in Figure 5, is active with DE1. This is not 

observed in the case of DE2 where the increased “greediness” results in the 

derivation of both optimal and near-optimal solutions. Thus, the coefficient of 

variation is increased considerably as compared to other methods. The DE3 variant, 

which stochastically transforms the optimization scheme to either DE1 or DE2, 
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exhibits very good coefficients of variation that fall in between the values observed 

from DE1 and DE2. 

 

 γ n a Fy uy 

SGA (P=25) 14.27% 19.58% 27.81% 6.27% 11.36% 

SGA (P=50) 13.42% 36.64% 29.25% 6.88% 12.88% 

µGA 18.70% 26.86% 39.27% 10.06% 17.19% 

Hybrid Method 7.74% 14.28% 23.24% 4.36% 8.28% 

Simple PSO 7.76% 13.74% 11.56% 3.40% 6.67% 

Enhanced PSO 8.32% 8.08% 7.27% 0.31% 2.86% 

DE1 (random base) 0.00% 0.03% 0.04% 0.01% 0.01% 

DE2 (best base) 7.95% 13.54% 22.84% 3.58% 6.67% 

DE3 (mixed base) 3.31% 4.53% 3.82% 0.35% 0.75% 

 

Table 3: Coefficients of variation after 5000 analyses 

 

5  Conclusions 
 

In this study, several EAs are employed for the identification of an unknown 

Bouc-Wen hysteretic system that represents a full-scale bolted-welded steel 

connection. The identification is based on actual experimental data. The algorithms 

implemented include SGA, µGA, a hybrid method originally presented in [4], two 

variants of PSO and three variants of DE. 

The results indicate that DE is the best algorithm for the specific problem. In 

particular, the third DE variant, proposed herein, combines impressive exploration 

and exploitation capabilities. On the other hand, the classic DE variant (DE1) 

exhibited impressive robustness and produced excellent results after a reasonable 

number of function evaluations. The Enhanced PSO algorithm also performs 

satisfactorily. The hybrid method [4] is better suited for more difficult problems, as 

its bounding method, which gradually diminishes the size of the DS, is hardly even 

used in this problem. The worst performing algorithm for this problem is µGA. 
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