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Abstract. Although an increase of population size usually improves the average performance of the Particle 

Swarm Optimization (PSO) algorithm, in some cases, however, it can become detrimental on robustness, or it 

can result to high computational cost. In this study, the relative performance of various PSO variants implement-

ing time-varying population schemes is examined against the PSO algorithm with inertial parameter. The varia-

tion of the population is based on the Saw – Tooth oscillation scheme, implemented within various Evolutionary 

Algorithms (EAs) for demanding optimization problems. The performance is examined for a wide selection of 

unimodal and multimodal functions. 

1 INTRODUCTION 

Particle Swarm Optimization (PSO) is a population-based stochastic optimization technique suitable for 

global optimization with no need for direct evaluation of gradients. The method, introduced by Kennedy and 

Eberhart
[1]

, mimics the social behavior of flocks (swarms) of birds (particles) and satisfies the five axioms of 

swarm intelligence, i.e., proximity, quality, diverse response, stability and adaptability
[4]

, which are essential for 

the class of connectionist models like the PSO
[4]

. The algorithm searches the Design Space (DS) by adjusting the 

trajectories of individuals, called “particles”, viewed as moving points in the DS. These “particles” are attracted 

towards the positions of both their personal best solution and the best solution of the swarm in a stochastic man-

ner
[5]

. Herein, two time-varying population schemes are examined and their effects on performance are discussed. 

2 PARTICLE SWARM OPTIMIZATION 

In PSO, each particle of the population occupies a given position which reflects a candidate design in the DS. 

The position of the particle is updated using the information of the velocity vector, where for simplicity the time 

step is considered as unity. The velocity at the next time step is a function of (a) the current velocity of the par-

ticle, (b) the position of the current best solution found by the particle and (c) the position of the current best 

solution found by the whole swarm, as follows
[5]

: 

 ( ) ( ), ; 1 , ; 1 1 , 2 2 ; 1 max,i j t i j t i j i i i j tw c r p x c r g xυ υ υ+ += ⋅ + ⋅ ⋅ − + ⋅ ⋅ − ≤υ  (1) 

where υi,j;t is the i
th

 velocity component of the j
th

 particle at time step t; w is the inertia coefficient, controlling 

the influence of the current velocity; c1 is the cognitive parameter, controlling the influence of the best solution 

found by the particle; c2 is the social parameter, controlling the influence of the best solution found by the swarm; 

r1 and r2 are uniformly distributed random values in the range [0,1]; pi,j is the i
th

 component of the best position 

encountered by the j
th

 particle until time step t; gi is the i
th

 component of the best position encountered by the 

whole swarm until time step t; υmax is the maximum allowable velocity of the particle and xi,j;t is the i
th

 compo-

nent of the position of the j
th

 particle at time step t. The position of the particle at time-step t+1 is evaluated as
[1]

: 

 
; 1 ; ; 1j t j t j t+ += +x x υ  (2) 

where the xj;t and xj;t+1 are the position vectors of the j
th

 particle at time step t and t+1, respectively, and υj;t+1 

is the velocity vector of the j
th

 particle for the transition from t to t+1. 

 

 



C. K. Dimou, A. E. Charalampakis, V. K. Koumousis 

3 TIME VARYING POPULATION SCHEMES – RANKING SCHEMES 

In the literature it is reported that an increase of population size improves the average performance of the 

PSO algorithm
[2]

. In some cases, however, it could prove detrimental on robustness or it could result to high 

computational cost
[2]

. In this work, two time-varying population schemes are examined, which are defined in the 

spirit of Saw – Tooth oscillation scheme
[3]

. The first scheme is based on exponential law, where the population is 

doubled/halved after one time-period (Tperiod). The second scheme is based on linear law, where the population is 

increased/decreased by a specific amount after one time-period. For each scheme two variants are examined. The 

first variant (the decreasing scheme), considers a case where the population size decreases until a minimum 

threshold value. At that point, the population size is restored to its initial value and the process is repeated. The 

second variant (the increasing scheme), considers a population where the size increases until a maximum thresh-

old value. Again, at that point, the population size is restored to its initial value and the process is repeated. 

The main idea behind the implementation of the increasing scheme is based on the simple observation that 

PSO is part of a sub-family of Evolutionary Algorithms (EAs), where the driving force behind optimization is 

adaptation of the population to suite their “environment” and communication of information among the particles 

of the swarm
[4]

. This is not the case in EAs like the Genetic Algorithms, where the process of natural selection 

benefits from a large genetic pool, the crossover operator combines only the available information from a subset 

of the population (the “parents”) and the mutation operator arbitrarily modifies the solutions that will replace 

these “parents” into the next generation (the “offsprings”). Motivated by the aforementioned observations, the 

notion of “scouting” is introduced via the increasing scheme, where part of the swarm (the “scouts”) initially 

explores the DS and the remaining part of the swarm benefits from the information gathered by these scouts and 

focuses its attention at the areas of interest. 

The first (exponential) scheme with decreasing population is dubbed Exponential Decrease Scheme (EDS). In 

this, the population size at t=1 is given as: 

 ( ) ,max ,
1 2 stepsN

pop pop c
N t N N= = = ⋅  (3) 

where Npop,max is the maximum size of the swarm and Npop,c is the minimum threshold value. The size of the 

swarm remains constant for a time span equal to Tperiod. When this is completed, the swarm size is updated fol-

lowing the rule of either reducing the population of time step t by half or setting the N(t+1)=Npop,max if 

N(t+1)<Npop,c. The update rule is given as: 

 
( )

( ) ( ) ( )
( ) ( ),

,max

0.5
mod 0 1

1 0.5 1

pop c

period pop

if N t N thent
if then else N t N t

T N t N t else N t N

 ⋅ ≥     
= + =      + = ⋅ + =      

 (4) 

From eq. (4) it can be seen that the process repeats itself every (Nsteps+1)·Tperiod time steps. These steps define 

an epoch. The Tperiod is a function of υmax and parameter Nrevol , which defines the number of revolutions a particle 

can travel in the DS at υ=υmax. The Tperiod is given as: 

 ( )2

,max ,min

1max

,
n

revol

period i i

i

N
T DS DS x x

υ =

= ⋅ = −∑  (5) 

where xi,max and xi,min are the maximum and minimum value of the i
th

 Design Variable (DV), ||DS|| is the 

Euclidian distance of the main diagonal of the DS and n is the number of DVs. 

The exponential scheme with increasing population is dubbed Exponential Increase Scheme (EIS), where the 

population size at t=1 and its update rule are given as: 

 ( ) ,
1

pop c
N t N= =  (6) 

 
( )

( ) ( ) ( )
( ) ( )max

,

2
mod 0 1

1 2 1

pop

period pop c

if N t N thent
if then else N t N t

T N t N t else N t N

 ⋅ ≤     
= + =      + = ⋅ + =      

 (7) 

The second (linear) scheme with decreasing population is dubbed Linear Decrease Scheme (LDS). In this, the 

population size at t=1 and its update rule are given as: 

 ( ) ,max ,
1

pop pop c steps
N t N N N= = = ⋅  (8) 
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( )

( ) ( ) ( )
( ) ( ), ,

, ,max

mod 0 1
1 1

pop c pop c

period pop c pop

if N t N N thent
if then else N t N t

T N t N t N else N t N

 − ≥     
= + =      + = − + =      

 (9) 

The process repeats itself every Nsteps·Tperiod time steps. The Tperiod is defined as in eq. (5). 

Finally, for the linear scheme with increasing population (Linear Increase Scheme – LIS), the population size 

at t=1 is given as in eq. (6) and its update rule is given as: 

 
( )

( ) ( ) ( )
( ) ( ), max

, ,

mod 0 1
1 1

pop c pop

period pop c pop c

if N t N N thent
if then else N t N t

T N t N t N else N t N

 + ≤     
= + =      + = + + =      

 (10) 

The variation of the swarm size for the set of parameters {Npop,c, Nsteps,Nrevol, υmax}={32, 3, 2, 10%||DS||} is 

presented in Figure 1 for the EDS and EIS schemes, and in Figure 2 for the LDS and LIS schemes. Swarm size 

for the EDS and EIS varies from a maximum of 256 particles to a minimum of 32 particles, whereas for the LDS 

and LIS swarm size varies from a maximum of 96 particles to a minimum of 32 particles. 
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Figure 1: Swarm size variation for EDS and EIS schemes {Npop,c, Nsteps,Nrevol, υmax}={32, 3, 2, 10%||DS||} 
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Figure 2: Swarm size variation for LDS and LIS schemes {Npop,c, Nsteps,Nrevol, υmax}={32, 3, 2, 10%||DS||} 

When the swarm size increases, the new particles are generated in random. These particles are distributed un-

iformly in the DS inheriting only the information regarding the best solution found by the swarm. 

When the swarm size decreases, a process based on the relative performance of the particles is used to dis-

card the “least performing particles”. Two ranking variants are implemented, both of which are combinations of 

the objective of the best solution of the particle and the time elapsed from its discovery. The first variant consid-

ers as its prime criterion the best solution found by the particle. The second variant considers as its prime crite-

rion the time elapsed from the discovery of the best solution. Thus, the latter variant promotes particles with 

recent discoveries of new personal bests, to enhance the explorative capacity of the algorithm. 

The augmented objective used in the First Ranking Variant (FRV) is given as: 

 ( ) ( )1j j j jAO p r t t TP= + ⋅ + + −  (11) 



C. K. Dimou, A. E. Charalampakis, V. K. Koumousis 

where AOj is the augmented objective of the j
th

 particle, pj is the objective of the best solution of the j
th

 par-

ticle, rj is the rank of the j
th

 particle with respect to its objective and TPj is the time step where the j
th

 particle dis-

covered its personal best solution. All quantities refer to time step t. 

The augmented objective used in the Second Ranking Variant (SRV) is given as: 

 ( ) ( ) { } { }max max1 min maxj j j j j
j j

AO t t TP g g p g p g p= − ⋅  + +  + = =   (12) 

where g is the best objective of the personal best solutions encountered by the swarm and gmax is the worst 

objective of the personal best solutions encountered by the swarm. Eqs (11) and (12) ensure that the prime rank-

ing criterion is always conserved. All quantities refer to time step t. 

4 BENCHMARK FUNCTIONS 

Ten benchmark functions are examined (Table 1). Functions F1 to F5 are unimodal whereas functions F6 to 

F10 are multimodal or extremely multimodal. For function F9, the parameters aij used in
[6]

 are employed. 

 

# Name Function Range Known Optima 

F1 
Sphere  

Function 
( ) 2

1

n

i

i

f x
=

= ∑x  10
i

a x a a− ≤ ≤ =  ( )min ( ) 0,...,0 0f f= =x  

F2 
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( )

2

1 1

n i

j

i j

f x
= =

 
=  
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∑ ∑x  10
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( )
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2
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2
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1

n
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−
+
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=
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( )min ( ) ,..., 0
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b
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F5 
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( ) [ )4

1

0,1
n

i

i

f i x random
=

= ⋅ +∑x  10
i
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( )
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2

1

1
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n

i

i
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i

i

x
n

f
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n

π
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∑

∑
x
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i
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[7]

 

( ) ( )
1

418.9828873
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n

i i

i

n

f
x x

=

⋅ − 
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−

=
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∑
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=
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Langerman’s 
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Function
[8]
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2

1
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1

1
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cos

n

j ij
n

j

i
n

i

j ij

j
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π

π

=

=

=
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   
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∑
∑

∑
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( )
0 10

1

j
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i

x

a i n j

c i

≤ ≤

= − ⋅ + ∈

= ∈
nxm

n

A

C

 Not known 

Table 1: Benchmark Functions. 
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5 NUMERICAL RESULTS 

To investigate the performance of the proposed algorithms, a series of parametric studies is performed. With 

regard to the parameters of the PSO, the following values are considered; w={1.0, 0.8, 0.6}, c1={1.5, 2.0, 2.5}, 

c1+c2=4.0, υmax={10%||DS||, 15%||DS||, 20%||DS||}
[9]

 and swarm size N={64, 128} creating a basis of 

3·3·3·2=54 analyses with different parameter sets. 

The four time-varying population schemes are coupled with two ranking variants, creating 8 variants dubbed 

as EDS-FRV, EDS-SRV, EIS-FRV, EIS-SRV, LDS-FRV, LDS-SRV, LIS-FRV and LIS-SRV. 

With regard to the newly introduced parameters the following values are considered; Npop,c={16, 32}, 

Nsteps={2, 3, 4} and Nrevol={1, 2}. These create a basis of 2·3·2=12 analyses which are coupled with the 

3·3·3=27 combinations concerning values of w, c1 and υmax. For each of these eight variants 27·12=324 analyses 

are performed. 

Each benchmark function is examined for n={2, 5, 10} where n is the number of DVs with the exception of 

F9, where different shapes of the DS are considered to examine the ability of the algorithm to locate the shifted 

global optimum (Table 1). Each analysis for the PSO and the variants under examination consist of 30 runs with 

a different initial random seed value to obtain meaningful statistics. 

Due to space limitations we focus on the results for n=10. The average objective of the best solution for the 

PSO and the examined variants for all benchmark functions are presented in Figure 3. For function F9 the min 

and max values of the DVs are {xmin=–64.5, xmax=64.5}. 

For the unimodal functions F1 to F5, the PSO manages to outperform the proposed variants after 5,000 func-

tion evaluations. This is not the case for the multimodal functions (with the exception of F9) where the variants 

outperform the PSO. For function F9 the results show that, for this function, the PSO as well as the examined 

variants are exceptionally suited optimization algorithms. 

Focusing on the relative performance of the examined variants, it is observed that the EIS and LIS variants 

outperform their corresponding EDS and LDS variants in all cases. Additionally, the EDS and EIS variants out-

perform the LDS and LIS variants. Focusing on the ranking variants, it is observed that the FRV variant outper-

forms the SRV variant. Thus, in terms of the average objective of the best solution, the scheme based on 

exponential law outperforms the scheme based on linear law and the notion of “scouting” improves the robust-

ness of the optimization schemes. 

For function F10, the optimization process is extended to 20,000 function evaluations. The average objective 

value of the best solution found by the swarm for the standard PSO and the EDS and EIS variants are presented 

in Figure 4. For [Nrevol, Nsteps]=[1, 2] the NR1-NS2 denotation is adopted; similar denotations are adopted for the 

remaining combinations. For the EDS and EIS variants, the average objective of the best solution is obtained 

over 324/6=54 analyses as in the case of the standard PSO. 

For all combinations, the EDS and EIS variants outperform the PSO at 20,000 function evaluations. It can be 

seen that the PSO exhibits signs of stagnation whereas all the examined combinations continue to improve the 

average. Focusing on the examined combinations, it is observed that for the EDS variant the best results are ob-

served for Nsteps≈3-4. On the other hand, for the EIS variant the best results are observed for Nsteps=2. With regard 

to Nrevol, the best results eventually are observed for Nrevol=2, particularly in the EIS variant. 

Finally, we focus our attention in the performance of the proposed variants with respect to the absolute min-

imum found by the optimization schemes for benchmark functions F6, F7, F8 and F10. 

In Figure 5, the objective value of the best solution for the EDS and EIS variants is presented for these func-

tions. The proposed variants outperform the PSO for these functions, with the exception of EIS-FRV at 2,000 

function evaluations in the case of F7 and at 1,000 function evaluations in the case of F8. 

In Figure 6, the objective value of the best solution is presented for the EIS-FRV combinations for F6, F7, F8 

and F10. For the EIS-FRV combination, it is observed that only the NR1-NS4 and NR2-NS4 combinations fail to 

outperform the PSO for F10 whereas for F8 these combinations are NR1-NS4, NR2-NS4 and NR2-NS3. The best 

results overall are observed for the NR2-NS2 combination. 

Focusing on the performance of EIS-FRV combination with respect to its capacity in discovering the global 

optimum for functions F6, F7, F8 and F10, it is observed that for function F6 the absolute min found after 20,000 

function evaluations is equal to the global optimum F6(opt)=0.00 (PSO F6(opt)= 2.0·10
-10

). The global optimum 

is found by all combinations with respect to Nrevol and Nsteps but NR1-NS4 and NR2-NS4. Moreover, for function 

F7 the absolute min found after 20,000 function evaluations is equal to F7(opt)=2.76·10
-7

 (PSO F6(opt)= 

1.16·10
-6

) which is a local minimum. This minimum is found by NR2-NS2. Furthermore, for function F8, the 

absolute min found after 20,000 function evaluations by the NR2-NS2 combination is F8(opt)=5.74·10
-8

 (PSO 

F8(opt)= 1.23·10
-2

) although the best local optimum is found by the EDS-SRV variant for the NR2-NS3 combina-

tion with F8(opt)=3.11·10
-8

. Finally, for function F10 all the proposed variants, all combinations for the EIS-FRV 

variant and the PSO converge to F10(opt)=−1 and the optimum, in this case, is found in less than 10,000 func-

tion evaluations. 
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Figure 3: Evolution of E[min] functions F1 to F8 and F10, n=10, function F9, n=2 {xmin=−64.5, xmax=64.5}. 
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Figure 4: Evolution of E[min] for function F10, n=10, analysis for EDS and EIS variants. 
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Figure 5: Objective of best solution for functions F6, F7, F8 and F10. 

6 CONCLUSIONS 

In this work, two time-varying population schemes are employed within the PSO algorithm. The first scheme 

is based on exponential law whereas the second one on linear law. For both schemes, two variants are considered. 

In the first variant (the decreasing scheme), the size decreases until a minimum-threshold value. At that point the 

population size is restored to its initial value and the process repeats itself. The second variant (the increasing 

scheme), considers a population which is increased until a maximum-threshold value. 

The robustness of the time-varying population schemes and its variants is examined against the PSO algo-

rithm for 10 benchmark problems. From the results, it is derived that although the PSO outperforms the exam-
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ined variants for functions F1 to F5 (unimodal functions), the variants manage to produce consistently better 

results for the multimodal functions F6 to F8 and F10. The EDS and EIS variants manage to outperform their 

corresponding LDS and LIS variants in all cases and the EIS and LIS variants outperform the respective EDS and 

LDS variants. Focusing on the ranking variants it can be seen that FRV outperforms SRV. 
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Figure 6: Objective of best solution for functions F6, F7, F8 and F10, EIS-FRV. 

In terms of the objective of the best solution, it is observed that the proposed variants outperform the PSO for 

multimodal functions F6, F7, F8 and F10. For F6, F7 and F10 the best results are produced by the variant EIS-

FRV for the NR2-NS2 combination. 

In conclusion, it is demonstrated that the proposed time-varying population schemes (and in particular the 

EIS variant) exhibit increased performance in the case of multimodal functions. Still, the results are indicative 

and thus non-conclusive and further investigation is required to gain an in-depth knowledge with regard to the 

effects of implementing time-varying population schemes in PSO. 
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