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Abstract: The Sivaselvan-Reinhorn model which is based on Bouc-Wen phenomenological model of hysteresis 

is explored from an engineering and mathematical perspective. Remarks and modifications of the original model 

are provided, concerning the hysteretic behavior of systems exhibiting stiffness degradation, strength 

deterioration and pinching. In addition, analytical solutions for the hysteretic response of the Sivaselvan-

Reinhorn model are derived using Gauss’ hypergeometric function on the moment – curvature relations. 

Sivaselvan-Reinhorn model exhibits displacement drift, force relaxation and nonclosure of hysteretic loops when 

subjected to small amplitude reversals. This nonphysical behavior is eliminated with the introduction of a 

stiffening parameter in the hysteretic differential equations. Numerical results are provided that demonstrate the 

significance of the proposed modifications, particularly for seismic excitations.  

1. INTRODUCTION 

The Sivaselvan-Reinhorn model is a smooth hysteretic model of Bouc-Wen type describing systems with 

stiffness degradation, strength deterioration, pinching and gap-closing behavior. It unifies different independent 

deterioration rules and finds many practical applications. The Sivaselvan-Reinhorn model has been employed 

successfully to steel frames 
[1]

, reinforced concrete beam-column connections 
[2]

, soil-pile interaction systems 
[3]

, 

fiber reinforced composites 
[4]

 etc. 

Apart from its wide applicability, the model displays certain deficiencies both mathematical and physical. In 

case of stiffness degradation the system’s response is independent of the loading history and thus does not 

account for cumulative deterioration, while in strength degradation and pinching the mathematical relations 

provided contain inconsistencies. Moreover, the model as all Bouc-Wen type models, exhibits displacement 

drift, force relaxation and non closure of hysteretic loops when subjected to short unloading–reloading paths, 

locally violating Drucker’s 
[5]

, or Illiushin’s 
[6]

 postulates of plasticity. In this work, modifications are proposed 

that treat these deficiencies and a stiffening term is presented, that deals with the system’s nonphysical behavior 

in case of small amplitude reversals. 

2. HYSTERETIC BEHAVIOR 

2.1 No degrading Model 

According to Sivaselvan-Reinhorn model 
[7]

, the hysteretic behavior with no degradation is modeled as two 

parallel springs; one linear elastic and one elastoplastic spring, changing stiffness upon yielding. The combined 

stiffness is given as: 

 
postyield hystereticK K K= +  (1) 

where the post-yielding stiffness of the linear elastic spring and the stiffness of the hysteretic spring are 

expressed as: 

 ( )
* .

*

0 0 1 2*
, 1 1 sgn

N

postyield hysteretic

y

M
K K K M

M

    Κ = = − − +      

α α η ϕ η  (2) 

where K0 is the total initial stiffness; α the post-yielding to initial stiffness ratio, N the power controlling the 

transition from elastic to inelastic range; η1 and η2 the parameters controlling the shape of the unloading curve; 
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Μ* the portion of the total applied moment shared by the hysteretic spring; ( )*

y yM = 1-a M , hysteretic spring’s 

yield moment. 
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Fig.1 Two-Spring parallel model representation 

2.2 Stiffness Degradation 

Stiffness degradation is modeled using the pivot rule, introduced by Park et al.[8] The pivot point is on the 

initial elastic branch at a distance of α1Μy on the opposite side, where α1 is the stiffness degradation parameter. 

yM

M

ϕ

1  
y

a M−

0 
k

R K0K
1ϕ

cur
ϕ

cur
M

yy
M M

+=

yy
M M

−=

 
Fig. 2 Park’s pivot rule 

 
The stiffness degradation is accounted for through a stiffness degradation factor Rk, introduced in the 

nondegrading stiffness of the hysteretic spring as: 

 ( ) ( )
*

*

0 1 2*
1 sgn

N

hysteretic k

y

M
K R K M

M

 
  = − − +  
 

�α η ϕ η  (3) 

The stiffness degradation factor Rk is defined as: 

 
1

0 1

c y

k

c y

M
R

K M

+ Μ
=

+

α

ϕ α
 (4) 

where Mc is the current value of moment; φc the current curvature;
0

K  the initial elastic stiffness, α1 the stiffness 

degradation parameter and  My=My
+
  if the current point (Mc, φc) is on the right side of the initial elastic branch 

while My=My
-
   if the current point is on the left side of that branch following φ� >0 and φ� <0 respectively.  

From Eq.(4), it turns out that the degradation factor Rk depends only on the current values of moment and 

curvature
[10]

 and thus does not depend on the history of loading. As such, it should be applied only in case of 

increasing loading amplitudes, as in decreasing ones the system is stiffened which is not usually the case. 

Instead a value 
trial

kR is evaluated 
[13]

 using Eq. (4) and the minimum value of Rk is stored in 
min

kR : 

 min minmin , trial

k k kR R R =    (5) 
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The degradation parameter Rk is interpolated between 
min

kR  and 
trial

kR : 

 min

2(1 )*( )trial trial

k k k kR R a R R= + − −  (6) 

From (6) , if α2=1 then Rk=Rk
trial

 and the system is identical to the original one, whereas if α2=0  the system’s 

stiffness diminishes continuously, since min

k kR R= . The response of a sdof system with unit mass subjected to 

Erzikan –EW and Kobe- Takatori seismic excitations is presented in Fig. 2 exhibiting significantly different 

behavior in stiffness degradation with respect to the degradation factor of Eq. (4) and Eq. (6) respectively. 
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Fig. 2 Hysteresis Loops with different stiffness degradation 

 

It becomes evident that the response in moment-curvature terms differs considerably. Moreover, the 

parameter α2 can be directly estimated depending on a system’s properties. Introducing parameter a2 both 

stiffness degrading and stiffness recovering cases can be successfully modeled. 

2.3 Strength Deterioration 
Strength deterioration is modeled by reducing the system’s capacity and occurs due to dissipation of energy 

and maximum deformation observed. The strength deterioration rule in Sivaselvan-Reinhorn model 
[7]

 reads; 

  

11/
/

/ / max 2

0 /

2

1 1
1

y y

ultu

M M

+ −
+ − + −

+ −

    Η
 = − −   − Η     

β
φ β

βφ
 (7) 

where My
+/- 

is the positive or negative yield moment; My0
+/-

 is the initial positive or negative yield moment; 

φmax
+/-

 is the maximum positive or negative curvatures; φu
+/-

 is the positive or negative ultimate moments and Η  
is the hysteretic energy dissipated, while Ηult is the hysteretic energy dissipated when loaded monotonically to 

the ultimate curvature without any degradation; β1 is a ductility-based strength deterioration parameter; and β2 is 

an energy-based strength degradation parameter.  

Moreover, the hysteretic energy in rate form is given by Sivaselvan-Reinhorn 
[7] 

as: 

 
( )

0 0

1
postyield k hysteretic

k k

K R K
H M M

R K R K

 + Μ
 = − = − 
    

�
� �� φ φ  (8) 
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Eq. (7) is proved mathematically inconsistent 
[13]

 and Mostaghel’s 
[9]

 strength deterioration rule is adopted, 

which reads: 

 

/ /

0

1

1

1
y y

m

M M
H

+ − + −  
=  

+ β
 (9) 

 
2/ /

0
m H

y y
M M e

−+ − + −= β

 (10) 

where My0
+/-

 is the initial value of yield moment; βm1, βm2 the strength deterioration parameters; H the dissipated 

energy. Differentiating Eq.(9) with respect  to time we obtain; 

 
( )

/ /

0 2

1

1

1
y y

m

d
M M H

dt H

+ − + −
 
 =
 + 

�

β
 (11) 

where H� is the rate of the dissipated energy given in Eq. (8). 

2.4 Pinching 

Pinching usually results from crack closure, bolt slip 
[7] etc. It is conceived as an additional spring connected 

in series to the hysteretic spring of the parallel model as presented in Fig. 3. According to Sivaselvan-Reinhorn 

model 
[7]

 the stiffness of the slip-lock spring is given as: 

 

1
2

* *

* *

2 1
exp

2
sliplock

s M M

M M

−
   −  Κ = −  

     σ σπ
 (12) 

where s is the slip length, equal to ( )max max  sR
+ −−φ φ ; 

* *

y
M M=σ σ  is a measure of the moment range over which 

slip occurs; 
* *

y
M M= λ is a mean moment on either side about which slip occurs and Rs, σ, λ are parameters of 

the model. Moreover, the stiffness of the slip-lock element should be distributed following a Gaussian or any 

other distribution such as:  
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Fig. 3 Serial-parallel model for pinching 

 

The system’s combined stiffness is expressed as: 

 

 
 

hysteretic slip lock

postyield

hysteretic slip lock

K K
K K

K K

−

−

= +
+

 (14) 

Wang & Foliente 
[10]

 showed that Eq. (12) results into mathematical inconsistencies and they proposed the 

following expression:  
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This still does not conform to the standard form of the Gaussian distribution and is substituted herein by the 

following expression 
[13]

: 
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Using Eq.(16) instead of Eq.(15), it is evident that a sdof system’s response is considerably different as 

shown in Fig. 4 for Kobe-Takatori excitation. 
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Fig. 4 Hysteresis Loops with different modeling for pinching (Kobe-Takatori excitation) 

 

The overall response of the proposed model based on Eq. (16) is compatible with the mathematics of Gauss 

distribution and leads to consistent results. 

3. ANALYTICAL RESPONSE 

Based on previous work of Charalampakis and Koumousis 
[11]

, analytical expressions for the hysteretic 

response of Sivaselvan-Reinhorn model can be derived. As shown in Fig. 5, the behavior of the model can be 

partitioned into four segments, depending on the sign of 
* */

y
M M  and �ϕ . Points A and C signify sign reversal of 

velocity �ϕ , whereas points B and D signify sign reversal of hysteretic moment
*

y
M . Since the contribution of the 

elastic spring is trivial, the analysis presented herein focuses in the response of the hysteretic spring only. 

 

 
Fig. 5 Response of Sivaselvan –Reinhorn model under cyclic excitation 
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Eliminating time, Eq. (17) can be expressed as: 

 ( ) ( )
* *

*

0 1 2*
1 1 sgn

N
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d M M
M

M
d

 
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The indefinite integral of Eq.(18) can be expressed analytically in terms of Gauss’ hypergeometric function 

( )2 1
, , ;F a b c w . Setting 

* * /
y

M M equal to z, then Eq.(17) can be expressed as: 

 
( ) ( )

*

0
1 1

y

N

M dz
d

z q
=

− Κ −
ϕ

α
 (19) 

as it is known that 

 
*

* * * *

*
 

y y

y

M
z M zM dM M dz

M
= ⇒ = ⇒ =  (20) 

Note that Eq.(20) is defined only if the system’s yield moment is fixed during excitation. Accounting for 

initial conditions, Eq.(18) can be written in the form[14]: 

 
( )
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where ( )*

1 2sgn  q M= +�η ϕ η and 
0

ϕ  is curvature’s initial value. In addition, setting 
( )

*

*

01

y

y

M

a K
=

−
ϕ  in Eq.(21) 

the following expression is obtained: 
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Eq.(22) can be solved analytically for z for specific values of the exponential parameter N. For N=1 and N=2 

z is given respectively as: 

 
( )( )

( )sgn( )

sgn( ) sgn y

z q

oz qz z e
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q

−
−

+ −
=

οϕ ϕ

ϕ

  (23) 

 
( ) ( )( )tanh / arctany oq qz

z
q

− +
=

οϕ ϕ ϕ
 (24) 

where ( )tanh ⋅ and ( )arctan h ⋅  are the normal and inverse hyperbolic tangent, respectively. In Eq.(24), q  

might be complex but the result is real. For arbitrary values of N, Eq.(21) must be solved numerically. 

 

If 
1 2

1/ 2= =η η then the unloading paths are straight lines and z parameter is given by 
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z z
−

= +οϕ ϕ

ϕ
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4. CONFORMITY WITH PLASTICITY POSTULATES 

4.1 Violation of Plasticity Postulates 
Sivaselvan-Reinhorn model exhibits force relaxation, displacement drift and nonclosure of hysteretic loops 

when subjected to short unloading-reloading paths. This is attributed to the fact that it predicts reduced loading 

stiffness as compared to the unloading stiffness at the same point, as shown in Fig. 6. As a consequence, 

negative total work is produced, as expressed in the shaded area in Fig. 6. This violates the Drucker and Illiushin 

postulates that demand nonnegative work in a closed stress or strain loop respectively and must hold for most 

isotropic materials, but do not apply necessarily for granular materials. 
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Fig. 6 (a) Displacement drift and (b) force relaxation 

 

4.2 Stiffening Factor 

These deficiencies have also been reported for the Bouc-Wen model [12]. To eliminate the aforementioned 

unrealistic behavior, a modification is proposed based on a mechanism controlling the system’s stiffness as 

follows: 

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( )
( )

( )
* **

* *

0 1 mod 2* * *
1 1 sgn 2 ,
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� � � �ϕ ϕ ϕ ϕ  (26) 

where 
mods

R is the introduced stiffening factor and H is the Heaviside function. 

The Heaviside function equals zero in the unloading branches and thus the modified model is identical to the 

initial one. For Rsmod =0 Eq.(26) reduces to that of the initial model. For Rsmod =1 the loading path’s stiffness 

becomes equal to that of the unloading at the same point.  

The stiffening factor Rsmod is defined as illustrated in Fig. 7. In illustration, we set the reversal point  P+, (φp
+ 

,M p
+ )in the upper half plane of the Μ-φ space. When unloading occurs, the system’s current position is 

represented by point A, (φ, Μ) with 0≤M< M p
+. Point C is the corresponding point of the unloading path. 

The unloading path from the reversal point P+ is known in analytical form and thus, using Eq. (22) point C’s 

curvature can be evaluated for η1≠η2 and η1=η2 respectively as: 
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Fig. 7 Formulation of the stiffening factor Rsmod 

Referring to the slope of AP
+
 line denoted as sa and sc the one of line CP

+
, the formulation of Rsmod can be 

based on the ratio of the two slopes aiming at controlling the stiffness in the Μ-φ space: 

 

1

1

p

y p p ca

c pp

y p c

M M

Ms

s M M

M

+

+ + +

++

+ +

 −
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ϕ ϕ ϕ ϕ

ϕ ϕ
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 (29) 

Therefore, the proposed expression of Rsmod is as follows: 

 ( )mod

p

p p c

s c

y y p

M M
R H H

M M

+ +

+ + +

   −
= − −      −   

ϕ ϕ
ϕ ϕ

ϕ ϕ
 (30) 

If the curvature becomes greater than that of the corresponding point on the elastic branch or if the current 

moment is greater than that of the reversal point then Rsmod becomes equal to zero, due to the Heaviside functions 

in Eq.(30), and the stiffening effect disappears. As point A approaches point C from the left, factor Rsmod 

increases and approaches unity. When points A and C coincide, Rsmod =1 and loading follows the unloading path 

exactly. 

Parameter p controls the intensity of stiffening to the left of the unloading path. For increased values of p, 

stiffening is concentrated close to the unloading path diminishing everywhere else. In general, values of p 

between 1.0 and 2.0 result into realistic hysteretic behavior. 

4.3 Selection of Reversal Points 

In case of a single reversal point the effect of the modification is straightforward. Nevertheless, in case of 

random excitation there are multiple reversal points and the critical issue is which reversal point should be used 
[12]

.  

When a reversal point P
+
 is established, a symmetric zone is defined in Μ-φ space where M∈ ( M p

+
,- M p

+
). 

Within this zone, P
+
 is ‘‘active’’ (Fig. 8) in the sense that any single unloading–reloading path of the original 

Sivaselvan-Reinhorn model falls below P
+
. At the limit, a path for which the current moment varies in the 

sequence M p
+
→ -M p

+
 → M p

+ 
will be guided to P

+
 exactly. Based on these observations, stiffening is required 

for excursions within this zone, so that the path of the hysteretic response will be guided either through or over 

P
+
. If the current moment somehow falls outside this zone, P

+
 is not considered active for the remaining process. 

Based on this formulation, the set of ‘‘active’’ reversal points at time 
i

t  is defined as 

 ( ) ( ) ( )( ) { }{ }1 2  , , , ,...,i j i k j j k j j i iT t T M t M t M t t t t t T
+ + +

+ += ∈ ∈ − ∀ ∈ ⊆  (31) 
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Fig. 8 Active zone of Reversal Point 

 

which contains the time instants that correspond to reversals for which the current moment remains within their 

respective ‘‘active’’ zone up to 
i

t . At each time instant
i

t , the stiffening factors Rsmod that correspond to all 

ti+∈
+

iT  are evaluated and the maximum one is used. 

For a system with the following characteristics:  

α=0.05, Μy=±200 kNm, N=2, K0=20 kN/m, η1=η2=0.5, P=1, the modification is the one presented in Fig. 9 
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Fig. 9 Application of modified model in case of many reversal points 

5. NUMERICAL EXAMPLE 

To demonstrate the combined effect of the proposed modifications to the Sivaselvan-Reinhorn model 
[7]

, a 

sdof system with unit mass was subjected to a number of seismic excitations. In Fig. 10, the response of the 

system to Northridge Tarzana 090 excitation is presented. 
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Fig. 10 Initial and Modified Response under the Northridge Tarzana 090 excitation 

 

The critical areas of the response are framed focusing on the effect of modifications. The overall response is 

affected considerably. Displacement drifts are removed and short reversals non closure is recovered.  

Implementation of the proposed modifications towards a consistent degrading hysteretic model of Bouc-Wen 

type are straight forward and conformity with plasticity postulates can be easily introduced into existing codes 

that handle Bouc-Wen models by adding the stiffening term. 
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6. CONCLUSIONS 

Bouc-Wen type hysteretic models are phenomenological rate plasticity models based on a number of easily 

identifiable parameters. They are capable of expressing effectively the inelastic- hysteretic response of a wide 

range of engineering materials, members and structural component behavior. Degrading models of Bouc-Wen 

type are more realistic at the cost of identifying some extra parameters. In this work modifications on the 

stiffness degradation factor of the Sivaselvan-Reinhorn model are proposed, as well as in the expression of the 

distribution related to pinching while Mostaghel’s strength deterioration model is adopted to result into an 

integrated degrading model. Furthermore, a stiffening term based on the analytical relations is introduced 

capable of correcting violations of plasticity postulates that raised considerable criticism of Bouc-Wen models in 

the last decades. 
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