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Abstract. The versatile Bouc-Wen model has been used extensively to describe hysteretic 

phenomena in various fields of engineering. Nevertheless, it is known to exhibit displacement 

drift, force relaxation and nonclosure of hysteretic loops when subjected to short unloading – 

reloading paths. Consequently, it locally violates Drucker’s or Ilyushin’s postulate of plastici-

ty. In this study, an effective modification of the model is implemented which eliminates these 

problems. A stiffening factor is introduced into the hysteretic differential equation which 

enables the distinction between virgin loading and reloading. Appropriate reversal points are 

utilized effectively to guide the entire process. It is shown that the proposed modification fully 

corrects the nonphysical behavior of the model. It is further demonstrated that the original 

and modified model may exhibit significantly different response under seismic excitation. 
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1 INTRODUCTION 

The Bouc-Wen model is a smooth model used to describe hysteretic phenomena. It was in-

troduced by Bouc [1] and extended by Wen [2], who demonstrated its versatility by producing 

a variety of hysteretic patterns. Although developed independently, it belongs to the class of 

endochronic models, first introduced by Valanis [3], which use the notion of intrinsic time to 

describe the inelastic behavior of materials. 

The Bouc-Wen model has been employed successfully in many areas of engineering. Nev-

ertheless, it is known that it suffers from nonclosure of hysteretic loops, displacement drift 

and force relaxation when subjected to short unloading – reloading paths [7]-[10]. The reason 

for this unrealistic behavior is that the model predicts reduced reloading stiffness as compared 

to the unloading one, while experimental results show that the two values should be approx-

imately equal [8]. In other words, the Bouc-Wen model does not differentiate between virgin 

loading and reloading [8]. As a result, it locally violates Drucker’s [4] (or Ilyushin’s [5]) 

postulate of plasticity. These postulates are of paramount importance in classical elastoplastic-

ity as they imply the normality rule for the plastic strain rate and the convexity of the yield 

surface in stress space. Ilyushin’s postulate is less restrictive and is applicable to both soften-

ing and hardening materials, while resulting in the same consequences as Drucker’s [6]. 

To cope with the violation of these postulates, a modification of the Bouc-Wen model was 

proposed by Casciati [9]. It involves the introduction of an additional hysteretic term which 

becomes effective when reloading and gives rise to a plastic displacement in opposite direc-

tion with respect to the one produced by the normal hysteretic term. This modification results 

in the reduction, yet not in the elimination of the violations of plasticity postulates [8], [10]. 

Notably, these violations can also be reduced by using a large value of the exponential pa-

rameter of the model [8], [10]. However, this results in an almost bilinear behavior and, thus, 

for many engineering problems this approach is deemed as inappropriate. 

In this study, the implementation of a simple modification is presented that eliminates the 

aforementioned unrealistic behavior of the Bouc-Wen model. The modification has been stu-

died in a previous work [18] and focuses directly at the root of the problem, i.e. the reduced 

reloading stiffness, by inserting a stiffening factor into the hysteretic differential equation. 

Following a suitable formulation, the modified model incorporates the observation that re-

loading after partial unloading should follow the unloading path up to the reversal point. 

Similar remedy was proposed by Riddell and Newmark [11] to correct the nonphysical beha-

vior of Clough’s original model [12]. It is shown that the proposed modification eliminates 

the unrealistic behavior of the Bouc-Wen model with respect to short unloading - reloading 

paths while leaving its behavior in full hysteretic loops practically unaffected. Guidelines for 

programming the proposed modification are also presented. Finally, it is shown that, when 

compared to the original model, the modified model may exhibit significantly different re-

sponse under random excitation. 

2 ORIGINAL MODEL FORMULATION 

The restoring force ( )F t  of a single-degree-of-freedom system can be expressed as: 

 ( ) ( ) ( ) ( )1
y

y

y

F
F t a u t a F z t

u
= + −  (1) 

where ( )u t  is the displacement, 
y

F  the yield force, 
y

u  the yield displacement, a  the ratio 

of post-yield to pre-yield (elastic) stiffness and ( )z t  a dimensionless hysteretic parameter that 

obeys a single non-linear differential equation with zero initial condition: 
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 ( ) ( ) ( ) ( )( )( ) ( )1
sgn

n

y

z t A z t u t z t u t
u

β γ = − +
 

� ��  (2) 

where A , β , γ , n  are dimensionless quantities controlling the behavior of the model, 

( )sgn i  is the signum function and the overdot denotes the derivative with respect to time. 

Small values of the positive exponential parameter n  correspond to smooth transition from 

elastic to post-elastic branch, whereas for large values of n  the transition becomes abrupt, 

approaching that of the bilinear model. Parameters β , γ  control the size and shape of the 

hysteretic loop. Parameter A  was introduced in the original paper, but it became evident that 

it is redundant [16]. 

It follows from Eq. (2) that the restoring force ( )F t  can be analyzed into an elastic and a 

hysteretic part as follows: 

 ( ) ( )yel

y

F
F t a u t

u
=  (3) 

 ( ) ( ) ( )1h

yF t a F z t= −  (4) 

Thus, the model can be visualized as two springs connected in parallel (Figure 1) where, 

ki=Fy/uy and kf=a ki are the initial and post-yielding stiffness of the system. 

uyu

F

yF

y
i y

F
k u=

if
k ak=

i
ak

max
hF

,hF u

( )1 ia k−

max
hF−

u

u
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,F u

,elF u
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Figure 1: Bouc-Wen model. 

Moreover, it has been shown in formal mathematical manner that the parameters of Bouc-

Wen model are functionally redundant; there exists a multiplicity of parameter vectors that 

produce an identical response for a given excitation [16]. Removing this redundancy is best 

achieved by fixing parameter Α to unity [16]. Henceforth, this constraint is assumed to hold. 

3 RESPONSE 

Recently, analytical expressions for the hysteretic response of Bouc-Wen model were de-

rived [17]. These expressions form the basis of the proposed modification as they provide the 

full unloading path from a reversal point in analytical form. 

The behavior of Bouc-Wen model can be distinguished into four cases depending on the 

sign of u�  and z. In illustration, the response under cyclic excitation is shown in Figure 2, 

where the dotted line signifies the path of the elastic response. Points A and C signify sign 
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reversal of velocity u� , whereas points B and D signify sign reversal of hysteretic force F
h
 or, 

equivalently, of hysteretic parameter z. 

u

f i
k a k= ⋅

F

A

B

D

C

0, 0u z> >�

0, 0u z< >�

0, 0u z< <�

0, 0u z> <�

 

Figure 2: Response of Bouc-Wen model under cyclic excitation. 

It was shown that the displacement u is associated with the hysteretic parameter z in terms 

of Gauss’ hypergeometric function ( )2 1 , , ;F a b c w  [17]. The following relation holds: 

 

0

0
2 1

1 1
1, ,1 ;

z

n

y z

u u
z F q z

u n n

−  = + 
 

 (5) 

where, ( )sgnq uzβ γ= + � and 0u , 0z  are the initial values of the displacement and hysteret-

ic parameter, respectively. Eq. (5) can be solved for z  analytically for specific values of n , 

i.e. 1n =  or 2n =  [17]. In any case, numerical solution of Eq. (5) is very efficient using bi-

section-type algorithms [17]. Special attention must be paid with respect to the values of q 

and sgn(z) per segment (Table 1). 
In the special case of β=γ, the unloading branches are straight lines and direct integration 

of Eq. (2) yields: 

 
( )0

0

y

u u
z z

u

−
= +  (6) 

Eq. (6) is independent of n. The loading branches are covered by Eq. (5). 

 

Segment q sgn(z) 

AB β-γ +1 

BC β+γ -1 

CD β-γ -1 

DA β+γ +1 

 

Table 1: Values of q and sgn(z) per segment. 

4 MODIFIED MODEL 

The main problem is that the model predicts reduced loading stiffness as compared to the 

unloading one at the same point. Thus, a mechanism for controlling the stiffness between 

these two extreme values is needed. To this purpose, Eq. (2) is modified as follows [18]: 
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 ( ) ( ) ( )( )( )1
sgn  2  ,

n

s

y

z A z u z H u z R u z u
u

β γ = − + −  
� � ��  (7) 

where the underlined expression is the modification, ( ) [ ], 0,1sR u z ∈  is a stiffening factor 

and ( )H i  is the Heaviside function, due to which the unloading branches of the modified 

model remain identical to those of the original one. When loading or reloading, factor 

( ),sR u z  controls the transition between loading (reduced) stiffness and unloading (increased) 

stiffness. For 0
s

R = , Eq. (7) reduces to Eq. (2) and the proposed modified model is identical 

to the original one. For 1
s

R = , the loading stiffness becomes equal to that of unloading at the 

same point. 

By virtue of Eqs. (5) and (6), the full unloading path from a reversal point is known a pri-

ori in analytical form. For β γ≠  this path is curved, whereas for β γ=  it is a straight line. 

Imposing that 1
s

R =  along this path has the desired effect that partial unloading followed by 

reloading will guide the hysteretic response exactly on the unloading path up to the reversal 

point. Upon there, factor 
s

R  should revert to zero to allow for further loading with normal 

(reduced) stiffness. Finally, factor 
s

R  should diminish in regions away of the unloading path 

so that normal behavior of Bouc-Wen model remains unaffected. 

Based on these observations, a suitable expression of ( ),sR u z  is determined. In illustration, 

we assume that ( ),
p p

P u z+ + +  is a reversal point in the upper half-plane of the u z−  space 

( 0pz
+ > ). Symmetric formulation with respect to the origin of the reference axes is assumed 

for the lower half-plane. During reloading, it is assumed that the current state is represented 

by point ( ),A u z  with 0 pz z
+≤ <  (Figure 3). Point ( ),cC u z  is the corresponding point of the 

unloading path. By employing Eqs. (5) and (6), 
c

u  is given by Eqs. (8) and (9) for γ β≠  and 

γ β= , respectively, as: 

 ( ) ( )2 1

1 1
1, ,1 ;

p

z

n

c y p

z

u z u z F z u
n n

β γ
+

+ = + − + 
 

 (8) 

 ( ) ( )*

c p y p
u z z z u u+ += − +  (9) 

It is noted that β  is considered equal to γ  in most cases of interest. Thus, the unloading 

path is given by Eq. (9) and there is no need to evaluate the hypergeometric function. 

A natural way of controlling stiffness in the u - z  space is based on the slopes in the same 

space. We denote 
a

s  the slope of line AP+ , as opposed to the “critical” slope 
c

s  of line CP
+ . 

Referring to Figure 3, it follows that ( )( ) ( )a c p c p
s s u u z u u+ += − − . Based on this ratio, a 

simple expression for the factor 
s

R  was proposed [18] as: 

 ( ) ( ) ( )( ) ( )
,

p

p c

s p c

p

u u z
R u z H z z H u z u

u u

+
+

+

 −
= − −   − 

 (10) 

where 1p ≥  is a constant. As point A  approaches point C  from the left, factor 
s

R  in-

creases and approaches unity. When points A  and C  coincide, 1
s

R =  and loading follows the 

unloading path exactly. Thus, the unloading path P+ - F  is a “horizon”, i.e. it cannot be 

crossed. When pz z
+>  or 

c
u u> , the stiffening effect disappears due to the Heaviside func-

tions of Eq. (10). Parameter p  controls the intensity of stiffening to the left of the unloading 

path. For increased values of p , stiffening is concentrated close to the unloading path and 

diminished everywhere else. In general, it was observed that values of p  between 1.0 and 2.0 

produce realistic hysteretic behavior. 



Aristotelis E. Charalampakis and Vlasis K. Koumousis 

 6

+

P

C

p
u

+

p
z
+

z

c
u

F
A

u

a
s

c
s

h
y
st
er
et
ic
 p
ar
am
et
er

 

Figure 3: Formulation of stiffening factor Rs. 

To demonstrate the effect of the proposed modification, we consider a system with 2n = , 

0.1β = , 0.9γ =  which is subjected to virgin loading. Unloading occurs when 1.5p yu u
+ =  and 

0.905pz
+ ≅ . We impose a displacement to the negative direction and then back to the positive 

direction. Applying the stiffening rule with 2p =  has a profound effect on the response of the 

hysteretic spring. In illustration, Figure 4 shows cases (a) to (d) where loading in the negative 

direction reaches 
y

u , 0.5
y

u , 0  and 1.5
y

u− , respectively. It is demonstrated that the differ-

ences in the response depend on the intensity of the reversal. In cases (a,b,c), the nonphysical 

behavior of Bouc-Wen model is corrected, whereas in case (d) the response of the original 

and modified model are practically identical.  

In addition, Figure 5 shows the contour plots of stiffening factor 
s

R  in case of 1p =  and 

2p = . These plots are fully defined upon establishment of reversal point ( )1.5 ,0.905
y

P u+ . 

The darker a point is, the more intense is the stiffening effect at that point during reloading. 

The edge of the darkest area is the unloading path, along which 1
s

R =  irrespectively of p . It 

is shown that for 2p =  stiffening is concentrated close to the unloading path. 

5 SELECTION OF REVERSAL POINT 

The effectiveness of the proposed modification was demonstrated for the case of a single 

reversal point. Nevertheless, for a system under random excitation a critical issue arises re-

garding which reversal point should be used. 

It has been shown that using either the last observed reversal point or the reversal point that 

corresponds to maximum displacement leads to a formulation that is ineffective in certain 

cases [18]. In order to cover all cases, one has to take into account multiple reversal points. 

Therefore, it is important to investigate the conditions under which a reversal point should be 

considered “active”. 
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Figure 4: Stiffening effect in u-z space: original model (left),  

modified model (right) (n=2, β=0.1, γ=0.9, up
+
=1.5uy, zp

+
≈0.905, p=2). 

When a reversal point ( ),
p p

P u z+ + +  is established, a symmetric zone is defined in u z−  

space where ( ),
p p

z z z+ +∈ − . Within this zone, P+  is “active” in the sense that any single un-

loading – reloading path of the original Bouc-Wen model falls below P+  (Figure 6). At the 

limit, a path for which the hysteretic parameter varies in the sequence p p pz z z
+ + +→− →  will be 

guided to P+  exactly [18]. Based on these observations, stiffening is required for excursions 

within this zone, so that the path of the hysteretic response will be guided either through or 

over P+ . If z  somehow falls outside this zone, P+  is not considered active for the remaining 

process. In other words, the active reversal points are those for which the hysteretic parameter 

remains within their respective “active” zone from the time of their establishment up to the 
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present time instant. The stiffening factors that correspond to all active reversal points are 

evaluated and the maximum one is used. 

 

 

Figure 5: Contour plot of Rs with n=2, β=0.1, γ=0.9, up
+
=1.5uy, zp

+
≈0.905 and (a) p=1.0 (b) p=2.0. 

To demonstrate the effectiveness of the proposed formulation, we consider a system with 

the following properties:  0.1β = , 0.9γ = , 0.10a = , 2.0n = , 2.86
y

F kN= , 0.111
y

u m= , 
213m kNs m=  and 2.0p = , subjected to Northridge TAR090 [19]. When using the formula-

tion with multiple reversal points, it is observed that all intermediate reversals are correctly 

ignored (Figure 7). These include the reversals at the end of the event, which cause consider-

able drift in the original model. 

 

 

Figure 6: “Active” zone of reversal point P
+

 (n=2, β=0.1, γ=0.9, up
+
=1.5uy, zp

+
≈0.905). 
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Figure 7: Response under the Northridge TAR090 [19] excitation using multiple reversal points. 

6 GUIDELINES FOR PROGRAMMING THE MODIFIED MODEL 

Programming of the proposed modification is straightforward and is implemented at each 

integration step by (a) adding the stiffening term into the differential equation, (b) evaluating 

and employing the maximum stiffening factor 
s

R  that corresponds to “active” reversal points 

using relation (10) and (c) updating the set of “active” reversal points. The latter is accom-

plished effectively by adding into the set the new reversal points and removing existing ones 

that have become “inactive”. 

In order to evaluate the response in a force-controlled experiment, the original single-

degree-of-freedom Bouc-Wen model with external viscous damping is cast into state-space as 

follows: 

 

( ) ( )
( ) ( )
( ) ( )

1

2

3

x t u t

x t u t

x t z t

= 
 

= 
 = 

�  (11) 

 

( )
( )
( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )( ) ( )

2

1

2 2 1 3

3

3 2 3 2

1
 1

1
 sgn  

y

y

y

n

y

x t
x t

F
x t c x t a x t a F x t f t

m u
x t

A x t x t x t x t
u

γ β

 
 
  
     

= − + + − −    
     

   
  − +    

�

�

�

 (12) 

where, 1x , 2x  and 3x  are auxiliary variables, c  is the linear viscous damping coefficient 

and ( )f t  is the external excitation. The derivatives for the modified model are given as: 
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( )
( )
( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )( )( ) ( )

2

1

2 2 1 3

3

3 2 3 2 3 2

1
 1

1
 sgn  2  

y

y

y

n

s

y

x t
x t

F
x t c x t a x t a F x t f t

m u
x t

A x t x t x t H x t x t R x t
u

γ β

 
 
  
     

= − + + − −    
     

   
  − − +    

�

�

�

(13) 

The above system can be integrated numerically using a Runge-Kutta 4th-5th order inte-

grator. Updating of active reversal points is performed after the completion of the evaluation 

of each time step. 

7 ELASTIC AND HYSTERETIC BEHAVIOR OF BOUC-WEN MODEL 

For real values of the stiffness it can be proved that the elastic behavior is approximated 

asymptotically from the inelastic regime, whereas the hysteretic behavior is restricted to thin 

hysteretic loops. Hysteresis in the linear case can be treated using complex valued stiffness as 

in [21]. 

To evaluate the inelastic deformation after an arbitrary loading-unloading circle, we need 

to decompose the response into phases as in Figure 8, where the dotted line signifies the path 

of the elastic spring. 

F

1

2

u

0

3
 

Figure 8: Calculation of inelastic deformation of Bouc-Wen model. 

Employing Eq. (5) in the sequence 0 1 2 3→ → →  and noting that 0 0u = , 0 2 0z z= = , 

1 0z >  and 3 0z < , one obtains: 

 ( )1
1 2 1 1

0 1 1
 1, ,1 ; 0n

y

u
z F z

u n n
β γ

−  = + + − 
 

 (14) 

 ( )2 1
1 2 1 1

1 1
0  1, ,1 ; n

y

u u
z F z

u n n
β γ

−  = − + − 
 

 (15) 

 ( )( )3 2
3 2 1 3

1 1
1, ,1 ; 0

n

y

u u
z F z

u n n
β γ

−  = + + − − 
 

 (16) 
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At final Point 3 the force of the hysteretic spring is opposite to that of the elastic spring, 

thus: 

 
( )

3
3

1
y

a u
z

a u
= −

−
 (17) 

Adding Eqs. (14) to (16) by parts and substituting Eq. (17) yields: 

 

( ) ( )

( )
( )

( )

3
1 2 1 1 1 2 1 1

3 3
2 1

1 1 1 1
 1, ,1 ; 1, ,1 ;

1 1
1, ,1 ;

1 1

n n

y

n

y y

u
z F z z F z

u n n n n

a u a u
F

a u n n a u

β γ β γ

β γ

   + + − = + + −   
   

  
 + +   −  −   

 (18) 

Eq. (18) can be solved efficiently for the unknown inelastic deformation 3u  using bisec-

tion-type numerical methods. For 1n = , it is solved analytically as: 

 

( )

( ) ( )( ) ( )( )

3

1

1 11 1 1
1 Productlog

y

a

a

u
u

a

a e z z
a a

a

β γ
β γ

β γ

β γ β γ
− +

−
−

= ×
+

  
− + − − −  

− −  
  
  

 (19) 

where, ( )ProductLog z is the principal solution for w  in 
w

z we=  and β γ≠  is assumed, 

so that using the hypergeometric function during unloading 1 2→  is meaningful. The physi-

cal meaning of Eqs. (18) and (19) is that, for an arbitrary loading-unloading circle, there is 

always a permanent non-zero inelastic deformation which may be small, but nevertheless cal-

culable. 

8 COMPARISON OF ORIGINAL AND MODIFIED MODEL 

It has been demonstrated that the proposed modification restores the physical consistency 

of the Bouc-Wen model from a theoretical perspective. What is more important is that the 

overall response of the modified model may be considerably different from that of the original 

in case of seismic excitation. 

In illustration, we are interested in the peak values of certain time histories for design pur-

poses. We measure the relative error of the peak values as follows: 

 
( )( ) ( )( )

( )( )
max max

max

y t y t

y t
ε

−
=  (20) 

where ( )y t  and ( )y t  are the time histories corresponding to the original and modified 

model, respectively, and ( )max ⋅  denotes the maximum absolute value. 

We consider a specific system with the following properties: 0.1β = , 0.9γ = , 0.10a = , 

2.0n = , 2.86
y

F kN= , 0.111
y

u m= . Regarding the modified model, the formulation with 

multiple reversal points is employed with 2.0p = . The plastic period is controlled by chang-

ing the mass of the system. For a selection of 20 strong motion recordings [19] (Table 2), 

Figure 9 and Figure 10 show the envelope of the relative error in the peak displacement and 
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peak hysteretic energy, respectively. The results have been filtered to include cases for which 

( )( )max yu t u≥  or ( )( )max yu t u≥ . Thus, only the results that involve an appreciable level 

of hysteretic damping are displayed. It is observed that the peak values of the modified model 

may be smaller or larger than that of the original one. For the excitations considered herein, 

the relative error may reach 38% and 24% for the peak displacement and peak hysteretic 

energy, respectively. 
 

# Title PGA (g) PGV (cm/s) PGD (cm) 

1 ChiChi CHY028 N 0.821 67.0 23.28 

2 ChiChi CHY028 W 0.653 72.8 14.68 

3 ChiChi TCU084 N 0.417 45.6 21.27 

4 ChiChi TCU084 W 1.157 114.7 31.43 

5 Kobe Takatori TAK000 0.611 127.1 35.77 

6 Kobe Takatori TAK090 0.616 120.7 32.72 

7 Northridge Rinaldi RRS228 0.838 166.1 28.78 

8 Northridge Rinaldi RRS318 0.472 73.0 19.76 

9 Northridge Tarzana TAR090 1.779 113.6 33.22 

10 Northridge Tarzana TAR360 0.990 77.6 30.45 

11 Kocaeli Duzce DZC180 0.312 58.8 44.11 

12 Kocaeli Duzce DZC270 0.358 46.4 17.61 

13 Tabas TAB-LN 0.836 97.8 36.92 

14 Tabas TAB-TR 0.852 121.4 94.58 

15 Imperial Valley I-ELC180 0.313 29.8 13.32 

16 Imperial Valley I-ELC270 0.215 30.2 23.91 

17 Loma Prieta GPC000 0.563 94.8 41.18 

18 Loma Prieta GPC090 0.605 51.0 11.50 

19 Erzikan ERZ-NS 0.515 83.9 27.35 

20 Erzikan ERZ-EW 0.496 64.3 22.78 

 

Table 2: Strong motion recordings taken from PEER [19]. 

 

Figure 9: Relative peak displacement error. 
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Figure 10: Relative peak hysteretic energy error. 

Another example of the corrective effect of the modified model refers to the calculation of 

the residual displacement. It has been observed that the residual displacement is underesti-

mated by the original Bouc-Wen model due to the oscillation at the end of the event [20]. 

During this oscillation, the non-physical behaviour of the original model causes significant 

drift (Figure 11), while the modified model corrects this problem inherently. This is especially 

important in seismic isolation, where the existing codes demand certain recentering capability 

of the system and the Bouc-Wen model is used very frequently.  

 

 

Figure 11: Underestimation of residual displacement due to oscillation at the end of the event [20].  

9 CONCLUSIONS  

A simple modification of the versatile Bouc-Wen model is proposed which results in the 

correction of its nonphysical behaviour when subjected to short unloading – reloading paths. 

This behaviour is manifested as displacement drift, force relaxation and nonclosure of hyster-

etic loops, which result into violation of Drucker’s or Ilyushin’s postulate. The proposed mod-

ification is based on the introduction of a suitable stiffening factor which is inserted directly 

into the hysteretic differential equation and differentiates virgin loading and reloading, a fea-
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ture that is absent in the original model. The notion of “active” reversal points is described 

which controls the entire process effectively. The proposed modifications are explained in de-

tail and their effects are demonstrated and discussed. Moreover, guidelines for an efficient 

implementation of the proposed modification in computer code are provided. Finally, it is 

shown that the original and modified model may exhibit significantly different response under 

seismic excitation. 

The proposed modification can be applied to extended Bouc-Wen models that also take in-

to account degradation phenomena, e.g. [15]. This is feasible since the modification focuses in 

the hysteretic spring only and it is fully formulated within the u z−  space.  
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