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Abstract. Hysteresis is a term that describes macroscopically many phenomena observed in 

engineering. The complexity of the actual mechanism behind hysteresis has given rise to the 

extended use of phenomenological models, such as the Bouc-Wen model. This paper presents a 

new stochastic identification scheme for Bouc-Wen systems that combines Sawtooth Genetic Algo-

rithm and a Bounding technique that gradually focuses into smaller and better regions of the search 

space. Numerous studies show that the proposed scheme is very robust and insensitive to noise-

corrupted data. Apart from frequency-independent hysteretic characteristics, the method is also able 

to identify viscous-type damping. 
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1 INTRODUCTION 

Hysteresis is a phenomenon observed in many fields such as mechanics, magnetism, elec-

tricity, materials and elasto-plasticity of solids. In mechanics, systems with components of 

inherent non-linear nature often exhibit overall hysteretic behavior. Examples include rein-

forced concrete sections, steel sections, bolted connections, base isolators such as Lead Rub-

ber Bearings (LRB), Friction Pendulum Systems (FPS) etc. 

The Bouc-Wen model is a versatile endochronic model that is often used to describe hyste-

retic phenomena. It was introduced by Bouc [1] in 1967 but it was Wen [2] in 1976 that ex-

tended the model and demonstrated its versatility by producing a variety of hysteretic patterns. 

These were further enhanced by Baber and Noori [3] to incorporate non-symmetric behavior 

and degradation phenomena, with the unavoidable expense of additional parameters. Since 

then, researchers have introduced improved Bouc-Wen type models, such as Foliente [4] and 

Sivaselvan and Reinhorn [5]. 

In general, identification of Bouc-Wen models poses a challenging problem because of its 

highly non-linear nature. Researchers have applied a variety of methods, such as Gauss-

Newton [6], Modified Gauss-Newton [7], Least squares [8], Simplex [9], Levenberg-

Marquardt [9], [10], extended Kalman filters [9], [11], reduced gradient methods [9], Diffe-

rential Evolution [12], [13], etc. 

Various techniques have been used to ameliorate accuracy and convergence problems. Fur-

thermore, in most cases, crucial system parameters such as stiffness and viscous damping are 

considered known. Considering base isolators, frequency-independent hysteretic damping is 

dominant and there is no need to employ viscous damping. In other cases, however, viscous-

type effects may become significant when the evolution of the phenomenon is fast [10]. 

Therefore, viscous damping characteristics need to be identified rather than assumed known.  

This paper presents a new stochastic identification scheme that addresses the aforemen-

tioned issues. The method combines Sawtooth Genetic Algorithm (GA) [14] and a Bounding 

technique. The latter is a critical improvement upon an earlier method presented by the au-

thors [15]. The results show that the proposed scheme is very robust and insensitive to noise-

corrupted data. 

2 HYSTERETIC MODEL 

2.1 Formulation  

Considering a single-degree-of-freedom (SDOF) system, the restoring force F(t) can be 

expressed as: 

 ( ) ( ) ( ) ( )1
y

y

y

F
F t a u t a F z t

u
= ⋅ ⋅ + − ⋅ ⋅  (1) 

Where, u(t) is the displacement, Fy the yield force, uy the yield displacement, a  the ratio of 

post-yield to pre-yield (elastic) stiffness and z(t) a dimensionless hysteretic parameter that ob-

eys a single non-linear differential equation: 

 ( ) ( ) ( ) ( )( )( ) ( )1 n

y

z t A z t sign u t z t u t
u

γ β = − ⋅ ⋅ ⋅ + ⋅
 

� ��  (2) 

Where, A, β, γ, n are dimensionless quantities controlling the behavior of the model and the 

overdot denotes the derivative with respect to time. Small values of the positive exponential 

parameter n  correspond to smooth transition from elastic to post-elastic branch, whereas for 
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large values of n  the transition becomes abrupt, approaching that of a bilinear model. Para-

meters β, γ, control the size and shape of the hysteretic loop. Parameter A was introduced in 

the original paper, but recently it became evident that it is redundant. 

It follows from Eq. (1) that the restoring force F(t) can be analyzed into two springs con-

nected in parallel; the first is the linear elastic post-yielding spring and the second is the hyste-

retic spring (Fig. 1), where, ki=Fy/uy is the initial stiffness, kf=αki the post-yielding stiffness 

and F
*
 the force of the hysteretic spring. 

uyu
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yF

y
i
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k u=
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ia k⋅

maxF ∗

,F u

( ) ,F F u∗−
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( )1 ia k− ⋅
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Fig. 1: Bouc-Wen model 

Apart from rate-independent hysteresis, viscous-type damping can also be employed. In 

this case, the equation of motion of a SDOF system becomes: 

 ( ) ( ) ( ) ( )m u t c u t F t f t⋅ + ⋅ + =�� �  (3) 

Where, m is the mass, c the linear viscous damping coefficient and f(t) the excitation force. 

In displacement-controlled experiments, the time history of the displacement and its deriva-

tives are readily available and the calculation of forces is trivial. In case of force-controlled 

experiments, by substituting Eq. (1) into (3) one obtains: 

 ( ) ( ) ( ) ( ) ( ) ( )1
y

y

y

F
m u t c u t a u t a F z t f t

u
⋅ + ⋅ + ⋅ ⋅ + − ⋅ ⋅ =�� �  (4) 

Eqs. (4) and (2) are transformed into state-space form as follows: 
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 (6) 
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The above system of three non-linear ordinary differential equations (ODEs) is solved nu-

merically using Livermore stiff ODE integrator, which is based on the “predictor-corrector” 

method [16] or by employing 4th-5th order Runge-Kutta method. The latter is more efficient 

in terms of computational time and thus more suitable for stochastic optimization algorithms; 

the former is more accurate and can be used for comparison purposes. 

2.2 Parameter constraints  

Ma et al. have come to the conclusion that the parameters of the original Bouc-Wen model 

are functionally redundant [17]. Typically, identification is based on error minimization of a 

predicted history ( )ˆ |y t p  as compared to a reference history y(t). If the parameter redundancy 

is not treated, the same optimized predicted history can be produced from a multitude of pa-

rameter vectors p. Thus, the actual outcome of identification is dependent on factors such as 

the method employed, initial conditions, a priori knowledge of true parameter values, even 

sheer chance. As a consequence, the identified parameter vector may be totally erroneous 

when the excitation characteristics are different. Clearly, the aforementioned issue is critical 

with respect to the ability of the model to predict the response under an unknown excitation.  

From the mathematical point of view, various parameters may be fixed in order to remove 

the redundancy of the model [17]. However, physical parameterization requires that parameter 

A is fixed to the value of unity: 

 1A =  (7) 

Indeed, based on Eqs. (1) and (2), it can be shown that the initial stiffness ki
*
 exhibited by a 

system is given by: 

 ( )
0

1
y y

i

t y y

F FdF
k a a A

du u u

∗

=

= = ⋅ + − ⋅ ⋅  (8) 

It is observed that only when Eq. (7) holds does ki
*
 become equal to ki=Fy/uy, as implied by 

the formulation of the model in Fig. 1. It is stressed that this modification does not decrease in 

any way the ability of the model in simulating hysteresis. Henceforth, Eq. (7) is assumed to 

hold without further notification. 

Another important issue is related to parameters β and γ. Suitably chosen values of these 

parameters lead to hysteretic loops with strain-hardening, as demonstrated by Wen [2]. How-

ever, these parameters are purely mathematical and do not have physical interpretation. How-

ever, early studies by Constantinou and Adnane [18] suggested imposing a certain constraint, 

viz. A/(β+γ)=1, to reduce the model to a viscoplastic formulation. Strain hardening can be 

achieved by more efficient techniques, such as the introduction of a dedicated spring. This can 

be controlled by physical parameters, such as the displacement at which strain hardening is 

initiated; an example of this approach can be found in Sivaselvan and Reinhorn [5]. Thus, the 

second constraint is as follows: 

 1β γ+ =  (9) 

In this work, the term “modified Bouc-Wen model” will refer to the modifications imposed 

by Eqs. (7) and (9). The former eliminates the parameter redundancy while the latter is related 

to physical parameterization issues. The modified model displays good mechanical properties 

and contains no parameters that are consistently insensitive [17]. Thus, the identification 

problem becomes unimodal and a suitable algorithm will be devised for this purpose. 
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3 IDENTIFICATION SCHEME  

3.1 General 

Parameter identification can be converted into an optimization problem by invoking a suit-

able objective function. Evolutionary Algorithms (EAs), which are inspired by natural selec-

tion and survival of the fittest, are considered to be amongst the most reliable and efficient 

methods for global optimization. They are able to provide near-optimum results by evolving a 

small population of candidate solutions. In particular, EAs are suitable for identification pur-

poses for two main reasons: first, they rely on “payoff” data, i.e. not derivative data, which is 

very important for highly non-linear problems; second, they possess an inherent capability for 

massive parallel computing. 

Invariably, EAs are characterized by the so-called anytime behavior; the development of 

the population’s best individual shows rapid progress in the beginning, followed by gradual 

degradation until the point when evolution practically stops. Thus, it is not beneficial to let the 

EA evolve for too many generations, since progress will be limited and expensive [19]. The 

basic idea behind the proposed scheme is to take advantage only of the initial explosive part 

of evolution. Starting with very wide initial ranges for the parameters, so that inclusion of the 

optimal values is ensured, the EA is applied for a number of independent runs of few genera-

tions each, so as to provide a sufficient sample of the best parameter values. This sample is 

analyzed statistically using weight and truncation and new narrowed ranges for the parameters 

are calculated. This procedure is repeated until the ranges of all parameters are narrow enough, 

at which point identification stops. Thus, the algorithm is designed to focus in a single region 

of the search space and works very well when applied to the identification of the modified 

Bouc-Wen model, as will be demonstrated.  

3.2 Objective function 

In this study, the normalized Mean Square Error (MSE) of the predicted time history is 

used as objective function. In general, the discrete normalized form of the MSE of a predicted 

time history ( )ˆ |y t p  as compared to a reference time history y(t) can be expressed as: 

 ( )
( ) ( )( )2

1

2

ˆ |

100%

N

i i

i

y

y t y t

OF
N σ

=

−
= ⋅

⋅

∑ p

p  (10) 

Where, p is the parameter vector, σy
2
 the variance of the reference time history and N the 

number of points used. The time history of the displacement and external force is used for 

force- and displacement-controlled experiments, respectively. 

3.3 Evolutionary algorithm 

Due to its modular structure, the proposed scheme can accommodate any EA. In this work, 

a recently introduced GA variant, called Sawtooth GA [14], was selected. Sawtooth GA uses 

variable population size and partial reinitialization in a synergistic way to enhance perfor-

mance. This approach was compared to pure-GA and other GAs that use reinitialization of the 

population, such as the micro-GA, first suggested by Goldberg [20], with very good results. 

According to Sawtooth GA, the population size follows a predefined scheme (Fig. 2). 
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Fig. 2: Sawtooth population variation scheme 

The scheme is characterized by amplitude D and period of variation T. Thus, at a specific 

generation t, the population size n(t) is determined as: 

 ( ) 2 1
int int 1

1

D t
n t N D t T

T T

 ⋅  −  = + − ⋅ − ⋅ −   −    
 (11) 

Where, N is the mean population size. From parametric studies with a large testbed of un-

imodal and multimodal problems, it become evident that strong reinitialization of the popula-

tion, i.e. large values of D/N, was beneficial. Moreover, moderate periods performed well, 

with values of T/N around 0.50. 

3.4 Bounding 

Let i, j be the enumerator of parameter and identification step, respectively. At each step j, 

the GA is applied for Mr independent runs of few generations each. These runs can be per-

formed in parallel and the results can be collected by a host computer, thus reducing drastical-

ly the computational time. The results are sorted by the objective function value and the worse 

Mt ones are truncated. Let k be the enumerator of the remaining results, ranging between 1 

and Mr - Mt. The weight of result k is given by: 

 
( )max

k
k

k

k

OF
w

OF
=  (12) 

Where, OFk is the objective function value of result k. According to the above formulation, 

the worst result is assigned a weight of unity and the rest of the results are assigned weights 

greater than one. The weighted mean value of parameter i is calculated as follows: 

 

( )

( )
1

1

r t

r t

M M

k ik

k
i M M

k

k

w p

m

w

−

=
−

=

⋅
=
∑

∑
 (13) 

Where, pik is the value of parameter i of best individual k. The descriptive weighted stan-

dard deviation of parameter i is calculated as follows: 
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1
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=
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The new trial upper and lower bounds of parameter i are defined symmetrically around the 

weighted mean value mi as follows: 

 
, 1

, 1

i j i i

i j i i

u m q s

l m q s

+

+

= + ⋅

= − ⋅
 (15) 

Where, q is a real parameter with a typical value of 3.0. Finally, the new range of parame-

ter i is given by: 

 , 1 , 1 , 1 , 1, , ,
i j i j ij ij i j i j

l u l u l u+ + + +    =     ∩  (16) 

Two important points are noted; first, based on Eq. (16), the parameter ranges are not al-

lowed to expand. If the specific parameter is insensitive then the results will be scattered al-

most uniformly in the allowed range. Provided that the statistical sample is sufficient, the 

standard deviation will be large and the range will not be altered. In this way, narrowing of a 

range occurs only when there is enough information to justify it.  

Another important point is that the proposed method is very safe when the optimum para-

meter value lies at one end of the range. This is because, in general, the weighted mean value 

will lie close to the same end; since the new trial range is formed symmetrically around it, the 

optimum value will remain within boundaries. 

4 IDENTIFICATION 

In this work, the oscillating mass is the only parameter that is considered known or mea-

surable with sufficient accuracy. Nonetheless, the performance, even the success, of any iden-

tification scheme depends heavily on the input-output data. These should be maximally 

informative, in the sense that they should encapsulate all hysteretic characteristics. Moreover, 

parameter sensitivity depends not only on the mathematical formulation of a model but also 

on the excitation.  

Identification of hysteretic, i.e. rate-independent characteristics can be performed with a 

simple periodic excitation of few cycles; in this case, viscous damping is either omitted or 

considered known. To illustrate this, three cases of 3-period displacement-controlled sinu-

soidal experiments, namely cases 1a to 1c, are considered in Fig. 3. The amplitude is equal to 

0.5, 2.0 and 7.0 times the yield displacement, respectively. In addition, the El Centro excita-

tion was considered, as case 1d. The true parameter values, initial side constraints and mean 

results of ten independent runs are summarized in Table 1, while the comparative perfor-

mance is shown in Fig. 4. 
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Fig. 3: Hysteretic loops for sinusoidal displacement with umax / uy (a) = 0.5, (b) 2.0, (c) 7.0. 

 

 γ  n  a  y
F

 y
u

 
c  

True value  0.9000 2.0000 0.1000 2.8600 0.1110 0.0000 

Initial lower bound 0.0000 1.0000 0.0000 0.1000 0.0100 - 

Initial upper bound 1.0000 10.0000 1.0000 10.0000 1.0000 - 

1a (umax = 0.5 uy) 0.8856 1.9562 0.1075 2.8987 0.1123 - 

1b (umax = 2.0 uy) 0.8991 1.9986 0.1000 2.8597 0.1110 - 

1c (umax = 7.0 uy) 0.8676 1.9220 0.0987 2.8552 0.1093 - 

1d (El Centro) 0.9000 2.0000 0.1000 2.8600 0.1110 - 

Table 1: Parameter values, initial side constraints and final results (viscous damping known) 

  

Fig. 4: Comparative performance (viscous damping known). 

In the case of El Centro excitation (case 1d), progress is rapid and exact parameter values, 

i.e. to four decimal digits, are readily obtained. For the cases of sinusoidal displacement, the 

first response is almost linear and does not contain information on the post-elastic regime; as 

a result, identification fails to progress (Fig. 4a). In case 1c, the response is strongly non-

linear and the best initial performance is observed (Fig. 4a,b). This is because most of the in-

formation refers to the post-elastic regime and the corresponding bilinear skeleton is identi-

fied quickly. For the opposite reason, however, the sensitivity of the parameters controlling 

the transition between branches is small. In this work, the stop criterion for identification re-

fers to narrowing of parameter ranges rather than reaching a MSE threshold; thus, the best 

overall performance is exhibited by case 1b, in which the system just enters the post-elastic 

region and the sensitivity of all parameters is on the same level (Fig. 4a,b). 

When viscous damping is unknown, identification with a single sinusoidal experiment fails 

occasionally by predicting values of viscous damping coefficient greater than the true one. 

This is to be expected, since under simple harmonic excitation all damping can be attributed 
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to viscous-type effects of a linear system. The concept of equivalent viscous damping has 

long been used in structural analysis in the past because of its simplicity. However, it is 

known that this transformation is valid only for the specific amplitude and frequency; moreo-

ver, the equivalent viscous damping factors are strongly dependent on amplitude [21]. There-

fore, this problem can be readily addressed by combining two experiments of different 

amplitude in one e.g. combining cases 1b and 1c. In this case, the mean normalized MSE can 

be used as objective function and identification with unknown viscous-type damping is al-

ways successful. Three cases, namely cases 2a to 2c, are considered. These are, respectively, a 

failed attempt using experiment 1b only, a combination of cases 1b and 1c and the El Centro 

excitation. The true parameter values, initial side constraints and identification results are 

summarized in Table 2. The hysteretic loop of case 2a, as compared to the true system re-

sponse, is shown in Fig. 5a. Exact parameter values are obtained for both cases 2b and 2c; 

however, it is observed that the former case, i.e. the combination of two sinusoidal experi-

ments, exhibits roughly 3 times better performance (Fig. 5b). 

 

 γ  n  a  y
F

 y
u

 
c  

True value  0.9000 2.0000 0.1000 2.8600 0.1110 5.4292 

Initial lower bound 0.0000 1.0000 0.0000 0.1000 0.0100 0.0000 

Initial upper bound 1.0000 10.0000 1.0000 10.0000 1.0000 100.0000 

2a (umax = 2 uy) 0.6211 1.5397 0.1736 2.5542 0.1013 6.4835 

2b (umax = 2; 7 uy) 0.9000 2.0000 0.1000 2.8600 0.1110 5.4292 

2c (El Centro) 0.9000 2.0000 0.1000 2.8600 0.1110 5.4292 

Table 2: Parameter values, initial side constraints and final results (viscous damping unknown) 

  

Fig. 5: (a) Case 2a as compared to true response (b) performance comparison of cases 2b and 2c. 

5 NOISE  

In reality, experimental data are always corrupted by noise of various origins. The pro-

posed scheme was used to identify hysteretic systems with noise-corrupted data that are pro-

duced in the following manner: 

 ( ) ( ) ( )1i i iy t r y tε= + ⋅ ⋅  (17) 

Where,
i

r ’s are a sequence of random variables with uniform distribution in the interval 

( )1,1−  and parameter ε  is the noise to signal ratio (NSR). Three levels of noise were consi-

dered, with NSR equal to 1%, 5% and 10%. The parametric configuration G2 and the initial 
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side constraints of Table 2 were used. The oscillating mass was equal to 28.6 and the El Cen-

tro accelerogram was used in all cases. No noise pre-filtering was applied. 

The mean best parameter values, summarized in Table 3, show that the proposed scheme is 

insensitive to noise. The bounding progress of the most insensitive parameter, i.e. parameterγ , 

is shown in Fig. 6. It is observed that faster convergence occurs for lower levels of noise con-

tamination. 

 

 γ  n  a  y
F

 y
u

 
c  

True value 0.9000 2.0000 0.1000 2.8600 0.1110 5.4292 

NSR = 1% 0.9010 1.9998 0.1000 2.8608 0.1110 5.4261 

NSR = 5% 0.9019 2.0096 0.1001 2.8569 0.1110 5.4369 

NSR = 10% 0.8993 1.9953 0.0995 2.8642 0.1111 5.4014 

Table 3: Identification results from noise-corrupted data 

 

Fig. 6: Bounding progress of parameter γ for noise-corrupted data 

6 CONCLUSIONS  

In this work, a new stochastic identification method is presented. The scheme consists of a 

new GA variant, called Sawtooth GA and a Bounding process. The initial parameter ranges 

are very wide so that inclusion of the optimal values is ensured. Mass is the only system prop-

erty that is considered known; stiffness and viscous-type damping characteristics are identi-

fied. Progress occurs as the algorithm continuously focuses in better regions of the search 

space by narrowing the ranges of parameters. Instead of being trapped into local optima, the 

narrowing process is suspended when statistic analysis of the data does not justify progress. 

Due to its modular structure, the scheme can accommodate any evolutionary algorithm. 

Moreover, it lends itself very easily to massive parallel computing. Assuming that the net-

work is consisted of similar computer systems and the overhead from data transfer is negligi-

ble, the time required is inversely analogous to the number of computers used. 

Numerous experiments show that the proposed scheme is extremely robust in identifying 

systems with noise-free or noise-corrupted data. The efficiency of the method is investigated 

with respect to experiment design and whether viscous-type effects are identified or not. Al-

though a limited set of data is presented, many experiments have been conducted that support 

any observations made herein. 
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