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Abstract 
 

This paper presents the basic features of mySpec, a computer program that has been 

designed to enhance learning in subjects that cover structural dynamics, earthquake 

engineering and hysteretic systems in graduate and post-graduate level. The program 

features a fully graphical interface with many interactive capabilities and covers the 

following topics: linear elastic analysis, linear elastic response spectra, non-linear 

analysis (bilinear) and Bouc-Wen hysteretic systems with arbitrary excitation force, 

either alone or combined with an earthquake accelerogram. Viscous damping can be 

used in all cases. The program is freely distributed through the Internet. 

 

Keywords: Educational software, structural dynamics, earthquake engineering, 

hysteretic systems, Bouc-Wen. 

 

1  Introduction 
 

Deeper understanding of the response of multi-degree-of-freedom structures under 

dynamic excitation is of major importance for the Structural Engineer. This 

knowledge is not always intuitive and may be assisted considerably by means of 

interactive software that provides results for simplified systems, such as Single-

Degree-Of-Freedom (SDOF) systems or Two-Degree-Of-Freedom (2DOF) systems. 

 

MySpec was written to provide the undergraduate and postgraduate student a 

user-friendly computational tool that is capable of analyzing simple systems with 

various simple or more advanced models and to provide results in a visual and 

comprehensive way, thus revealing both qualitative and quantitative characteristics 

of the response.  
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2  General features  
 

2.1 Earthquake accelerograms 
 

MySpec features an accelerogram library which can be loaded with earthquake 

accelerograms. Each accelerogram can be modified, i.e. stretched with respect to 

amplitude or duration, thus allowing the student to experiment with the response of 

these systems. 

 

 

Figure 1: Earthquake accelerograms in mySpec. 

 

2.2 Arbitrary force excitation 
 

MySpec also features an arbitrary force library which can be loaded with force 

histories. Similarly, each force history can be stretched with respect to amplitude or 

duration. Moreover, the force excitation can be used either alone or combined with 

an earthquake accelerogram. 

 

 

Figure 2: Arbitrary force excitation in mySpec. 
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2.3 Export results 
 

MySpec uses double precision arithmetic and it is capable of exporting the results in 

a standard fixed-length ASCII file. The data is therefore available for further 

processing by other software, such as spreadsheet software. 

 

2.4 Simulation of the response of SDF systems 
 

MySpec is capable of simulating the response of SDF systems in a visual and 

comprehensive way. The simulation form includes a sketch of the system as a 

lumped mass on top of a massless column. If the excitation is an earthquake then the 

motion of the ground is included. The user can select the simulation speed, has 

direct control over the simulation progress while any diagram of interest can be 

plotted on the screen as the simulation progresses, as for example in Fig.3. 

 

 

Figure 3: Simulation of the response of SDF systems. 

 

2.5 Simulation of the response of 2DoF systems 
 

MySpec is also capable of simulating the response of 2DoF systems. Similarly, the 

system is sketched as a lumped mass on top of a massless column and if the 

excitation is an earthquake then the motion of the ground is included. The user can 

select the simulation speed, has direct control over the simulation progress, while 

any diagram of interest can be plotted on screen either in X or Y direction as 

presented in Fig. 4. 

 

 



4 

 

Figure 4: Simulation of the response of 2DoF systems. 

 

2.6 Newmark’s method 
 

In many cases, the response of the system is calculated with the well-known 

Newmark’s method. In 1959, N. M. Newmark developed a family of time stepping 

methods, based on the following equations: 
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Typical selection for γ  is 1 2 . For β  a selection in the range 1 6 1 4β≤ ≤  is 

satisfactory. The following set of values is used for the average acceleration: 
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Another set of values is used for the linear acceleration: 
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These set of values are directly related to the assumption of the variation of the 

acceleration during the time step. 
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2.7 ODE integration  
 

For the analysis of Bouc-Wen type hysteretic systems, mySpec uses a robust 

Livermore stiff ODE integrator which is based on a “predictor-corrector” method 

[4]. 

 

2.8 Analysis options 
 

The analysis options are conveniently specified in one form, which appears by 

selecting “Analysis” under the “Options” menu of the main form. 

 

 

Figure 5: Analysis options. 

 

In the “Time step – use the minimum of” frame, the user can set restrictions on 

the maximum value of the time step used in the calculations. In general, the user 

should not modify these settings as this may affect the accuracy of calculations. 

 

In the “Additional duration” frame, the user can select the additional duration for 

which the program should calculate the response. This period of time corresponds to 

free vibration after the end of the excitation and provides also very interesting 

results. All graphs are plotted with magenta colour for the forced motion, followed 

by green colour for the duration of the free vibration. 

 

In the “Newmark parameters” frame, the user can select the parameters β  and γ  

of Newmark’s method.  

 

In the “Bouc Wen parameters” frame, the user can select the parameters , ,A β γ of 

Bouc Wen model [2], [3].  
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3  Analysis 
 

3.1 Linear elastic analysis for an SDF system 

 
3.1.1   Model 

 

The equation of motion for a viscously damped linear elastic SDF system is the 

following: 

 

 ( )m u c u k u p t⋅ + ⋅ + ⋅ =�� �  

 

Where u  is the relative displacement of the system, m u⋅ ��  is the inertia force, c u⋅ �  
is the damping force, c  is the viscous damping coefficient, k u⋅  is the spring force 

and ( )p t  is the external dynamic force [1]. 

 

In case of an earthquake, the external dynamic force is ( )( ) gp t m u t= − ⋅ �� , where 

( )gu t��  is the ground acceleration. The ground displacement ( )gu t  is a function of 

time, whereas the total (or absolute) displacement ( )tu t  is the sum of the ground 

displacement ( )gu t  and the relative displacement ( )u t  of the system at all times. 

 

 

Figure 6: Total displacement of a SDOF system. 

 

The linear elastic response is calculated following the well-known Newmark’s 

Method.  

 

3.1.2   Input data 

 

In order to input the data, select “Single Unidirectional > Options” from the “Linear 

Elastic Analysis” menu. The following form will appear: 

 

( )g
u t ( )u t

( )t
u t
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Figure 7: Input data for an elastic SDF system. 

 

The data required is the following: 

 

o Mass: The mass of the SDF system. 

o Stiffness: The stiffness of the SDF system. 

o Period: The natural period 
n

T  of the system in seconds, which is calculated as 

2
n

T m kπ= ⋅ ⋅ . 

o Damping ratio: The damping ratio ζ  of the system, in percentage (%). The 

damping ratio (or fraction of critical damping) is defined as 
cr

c cζ = . The 

critical damping coefficient is defined as 2 2
cr n

c m m k mω= ⋅ ⋅ = ⋅ ⋅ , where 

n
ω  is the natural frequency. The critical damping coefficient is used in 

viscously damped vibrations. For example, the equation governing viscously 

damped free vibration of a SDF system is 22 0
n n

u u uζ ω ω+ ⋅ ⋅ ⋅ + ⋅ =�� � . 

o Earthquake: In addition to or separately from the excitation, you can select 

the desired earthquake from the drop-down list. Note that the modified form 

of the earthquake is used in the calculations. 

o Excitation: In addition to or separately from the earthquake, you can select 

the desired excitation from the drop-down list. Note that the modified form of 

the excitation is used in the calculations. 

 

The “properties” frame contains the following data: 

 

o Period 
n

T : The natural period of the system in seconds, which is calculated as 

2
n

T m kπ= ⋅ ⋅ . 

o Period 
d

T : The natural period of damped vibration in seconds, which is 

related to 
n

T  by : 21
d n

T T ζ= − . 

o c : The damping coefficient, which is related to the damping ratio ζ  by: 

2
n

c m ω ζ= ⋅ ⋅ ⋅ . 
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o OmegaN: The natural frequency 
n

ω  of the SDF system, which is given by: 

n
k mω = . 

o OmegaD: The natural frequency of damped vibration 
d

ω  of the SDF system, 

which is related to the undamped natural frequency 
n

ω  by: 21
d n

ω ω ζ= ⋅ − . 

 

3.2 Linear elastic analysis for a 2DoF system 
 

3.2.1   Model 

 

For the case of 2DoF systems, the equations of motion are uncoupled and have the 

same form as the case of the SDF system while Newmark’s method is used for the 

calculation of the response. 

 

3.2.2   Input data 

 

In order to input the data, select “Single Bidirectional > Options” from the “Linear 

Elastic Analysis” menu. The following form will appear: 

 

 

Figure 8: Input data for an elastic 2DoF system. 

 

The data required for each of the two directions is described in detail for the case 

of SDF systems. 

 

3.3 Elastic response spectrum 
 

3.3.1   Calculations 
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Given a range of periods for a SDOF system and the time step, mySpec can produce 

the elastic response spectrum of various response parameters for a specific excitation 

and / or earthquake. The response is calculated using Newmark’s method for each 

period. The mass of the SDOF system is needed in case of force excitations. Also, 

viscous damping may be taken into account. 

 

The program may trim the very small periods or use a minimum time step 

because the iterative process is time consuming; for each period the full response of 

the SDOF system must be calculated so that the peak values can be stored. MySpec 

can produce response spectra for the following quantities: 

 

o Deformation: The peak value of deformation D  for each period. 

o Pseudo velocity: The peak value of the pseudo velocity V  which is defined as 

n
V Dω= ⋅ , where 

n
ω  is the natural frequency and D  is the peak deformation 

of the same system. Pseudo velocity has units of velocity and it is related to 

the peak value of the strain energy 0s
E  stored in the system during the 

excitation, given by 2

0 2
s

E mV= . 

o Pseudo acceleration: The peak value of the pseudo acceleration A  which is 

defined as 2

n
a Dω= ⋅ , where 

n
ω  is the natural frequency and D  is the peak 

deformation of the same system. Pseudo acceleration has units of acceleration 

and it is related to the peak value of base shear 0b
V  or the peak value of the 

equivalent static force 0s
f , given by 0 0b s

V f m A= = ⋅ . 

o Relative Velocity: The peak value of the relative velocity. 

o Acceleration: The peak value of the acceleration. 

 

3.3.2   Input data 

 

In order to input the data, select “Response Spectrum > Options” from the “Linear 

Elastic Analysis” menu. The following form will appear: 

 

 

Figure 9: Input data for an elastic response spectrum. 
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The data required is the following: 

 

o Minimum period: The minimum period of the range, in seconds. 

o Maximum period: The maximum period of the range, in seconds. 

o Period time step: The time step, in seconds. 

o Damping: The damping ratio ζ  of the system, in percentage (%). The 

damping ratio (or fraction of critical damping) is defined as 
cr

c cζ = . The 

critical damping coefficient is defined as 2
cr n

c m ω= ⋅ ⋅ , where 
n

k mω =  is 

the natural frequency. 

o Mass: The mass of the SDF system. This is required in case of force 

excitations. 

o Earthquake: In addition to or separately from the excitation, you can select 

the desired earthquake from the drop-down list. Note that the modified form 

of the earthquake is used in the calculations 

o Excitation: In addition to or separately from the earthquake, you can select 

the desired excitation from the drop-down list. Note that the modified form of 

the excitation is used in the calculations 

 

3.4 Non-linear analysis (bilinear model) for an SDOF system 
 

3.4.1   Model 

 

MySpec evaluates the nonlinear response based on a generic bilinear model. A 

typical bilinear force - displacement model is shown below: 

 

 

Figure 10: Generic bilinear model. 

 

The system is linearly elastic with stiffness k  up to the yield force. For 

displacement bigger than 
y

u  the system responds with a constant hardening stiffness 

0 u

fs

1

k

uy

fy

1

kh

1

k
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h
k . In the unloading branch, the system regains its initial stiffness k . The yield 

strength 
y

f  and the hardening stiffness 
h

k  may be different for the positive and 

negative directions of loading. Also, if the system has yielded and is unloaded, the 

new elastic branch has the same yield strength range as the initial values i.e. 

. .y pos y neg
f f+  but may be displaced in the positive or the negative direction because 

of the hardening stiffness. 

 

The response is calculated with the well-known Newmark Method. In general, 

Newmark’s method is very satisfactory in terms of accuracy. Since the time step is 

constant, two are the main sources of error: 

 

o The tangent stiffness is used instead of the (actual) secant stiffness in the 

calculation of the incremental resisting force. The secant stiffness cannot be 

used because it is not known. 

o The detection of the transitions in the force – deformation relationship is 

inaccurate. This inevitably leads to error accumulation. 

 

MySpec addresses these errors by using a small time step which can be modified 

by the user and by modifying the time step at the transitions from the elastic to 

inelastic branch and vice versa. In the first case i.e. the transition from the elastic to 

the inelastic branch, the condition is that the resisting force equals the yield strength: 

s y
f f= , whereas in the second case i.e. the transition from the loading to the 

unloading branch, the condition is that the velocity is zero: 0u =� . When a transition 

is detected, the time step is continuously divided by two, in order to detect the 

transition point accurately. When the corresponding condition is met to a certain 

accuracy, the algorithm continues to the next time step. 

 

3.4.2   Input data 

 

In order to use the bilinear model, select “Options” from the “Non Linear Analysis 

(Bilinear)” menu. The following form will appear: 

 

 

Figure 11: Input data for the bilinear model. 
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In the “SDF Properties” frame, the following data is required: 

 

o Mass: The mass of the SDF system.  

o Stiffness: The stiffness of the SDF system 

o Period: The natural period 
n

T  of the system in seconds, which is calculated as 

2
n

T m kπ= ⋅ ⋅  

o Positive yield: The positive yield strength of the system. 

o Positive hardening stiffness: The positive hardening stiffness of the system 

o Negative yield: The negative yield strength of the system (use positive 

values). 

o Negative hardening stiffness: The negative hardening stiffness of the system 

(use positive values). 

o Damping: The damping ratio ζ  of the system, in percentage (%). The 

damping ratio (or fraction of critical damping) is defined as 
cr

c cζ = . The 

critical damping coefficient is defined as 2
cr n

c m ω= ⋅ ⋅ , where 
n

k mω =  is 

the natural frequency. 

o Earthquake: In addition to or separately from the excitation, you can select 

the desired earthquake from the drop-down list. Note that the modified form 

of the earthquake is used in the calculations 

o Excitation: In addition to or separately from the earthquake, you can select 

the desired excitation from the drop-down list. Note that the modified form of 

the excitation is used in the calculations 

 

3.5 Non-linear analysis (Bouc Wen model) for a 2DoF system 
 

3.5.1   Introduction 

 

MySpec evaluates the nonlinear response for a 2DoF system based on a generic 

Bouc-Wen Model. This hysteretic or memory – dependent model is very popular 

because of its versatility and simplicity; it is a very concise model governed by a 

single differential equation. This was first introduced by Bouc in 1967 [2]. In 1976, 

Wen [3], extended the model and demonstrated its versatility by producing a variety 

of hysteretic patterns. 

 

3.5.2   SDOF System 

 

The restoring force of a SDOF system can be written as: 

 

 ( ) ( ) ( ) ( )1
y

y

y

F
F t a u t a F z t

u
= ⋅ ⋅ + − ⋅ ⋅  (1) 
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where, 
y

F  is the yield force, 
y

u  is the yield displacement, a  is the ratio of post-

yield to pre-yield (elastic) stiffness and ( )z t  is a dimensionless hysteretic parameter 

satisfying the following nonlinear differential equation: 

 

 ( ) ( ) ( ) ( )( )( ) ( )1 n

y

z t A z t sign u t z t u t
u

γ β = − ⋅ ⋅ ⋅ + ⋅
 

� ��  (2) 

 

where, , , ,A nβ γ  are dimensionless quantities controlling the shape of the 

hysteretic loop. In particular, small value of n  implies smooth transition from the 

elastic to the plastic branch, whereas a large value of n  ( 10n > ) results into an 

abrupt transition and the model is similar to a bilinear one. The equation of motion 

for a SDOF system with external viscous damping c  is given as: 

 

 ( ) ( ) ( ) ( )m u t c u t F t f t⋅ + ⋅ + =�� �  (3) 

 

where, ( )u t  is the displacement, ( )F t  is the restoring force, ( )f t  is the 

excitation force. Substituting (1) into (3) we obtain: 

 

 ( ) ( ) ( ) ( ) ( ) ( )1
y

y

y

F
m u t c u t a u t a F z t f t

u
⋅ + ⋅ + ⋅ ⋅ + − ⋅ ⋅ =�� �  (4) 

 

Equations (2) and (4) are transformed into a state-space form as follows: 

 

 

( ) ( )
( ) ( )
( ) ( )

1

2

3

x t u t

x t u t

x t z t

= 
 

= 
 = 

�  (5) 

 

( )
( )
( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )( ) ( )

2

1

2 2 1 3

3

3 2 3 2

1
1

1

y

y

y

n

y

x t
x t

F
x t c x t a x t a F x t f t

m u
x t

A x t sign x t x t x t
u

γ β

 
 
  
     

= − ⋅ ⋅ + ⋅ ⋅ + − ⋅ ⋅ −    
     

   
  ⋅ − ⋅ ⋅ ⋅ + ⋅    

�

�

�

 (6) 

 

The above system of three first order non-linear ODEs is solved numerically 

following Livermore stiff ODE integrator which is based on a “predictor-corrector” 

method [4]. 
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3.5.3   2DoF Model 

 

Extending the above equations for a 2DoF system, the equations of motion in two 

directions x  and y  are two ODEs of second order in time:  

 

 
( )

( )

, ,

, ,

,

,

0 00

0 00

1 0

0 1

x x x x y x y x x

y y y y y y y y y

x y x x x

y yy y y

u c u a F u um

u c u a F u um

a F z f

z fa F

⋅          
⋅ + ⋅ + ⋅ +          ⋅           

− ⋅     
⋅ =     

− ⋅      

�� �

�� �

 (7) 

 

These equations are coupled through the dimensionless hysteretic variables 

( )xz t , ( )yz t  which are governed by the system of non-linear equations: 

 

 ( )( ) ( )( )
( )( ) ( )( )

,

,

2

2

x y x x

y y y y

x x x x y y y x

y
x y x x y y y

z u u
A

z u u

z sign u z z z sign u z u

uz z sign u z z sign u z

γ β γ β

γ β γ β

⋅   
= ⋅ −   ⋅   

 ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +    ⋅   ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +   

��

��

� � �

�
� �

 (8) 

 

These equations were developed by Park et al. [5]. For the above system of 

equations 2n = . Equations (7) and (8) are converted in state space form by 

introducing additional equations as follows: 

 

 

1

2

3

4

5

6

x

x

x

y

y

y

x u

x u

x z

x u

x u

x z

= 
 = 
 = 
 = 
 =
 

=  

�

�

 (9) 
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( )

( )( ) ( )( )

( )

2

,

2 1 , 3

,

1
2

2 3 2 3 2 3 6 5 6 5
2

,3

4 5

5 ,

5 4 , 6
6

,

1
1

1
1

y x

x x x y x x

y x

y x

y y

y y y y y y

y y

x

F
c x a x a F x f

m u
x

A x x sign x x x x x sign x x xx

ux

x x

x F
c x a x a F x f

x m u

A x

γ β γ β

 
− ⋅ ⋅ + ⋅ ⋅ + − ⋅ ⋅ − 

   
   ⋅ − ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅ ⋅ + ⋅  
  

= 
 
   
  − ⋅ ⋅ + ⋅ ⋅ + − ⋅ ⋅ −      

⋅

�

�

�

�

�

�

( )( ) ( )( )2

5 3 6 2 3 2 6 5 6 5

,y y

x x sign x x x x sign x x x

u

γ β γ β

 
 
 
 
 
 
 
  
 
 
 
 
 
 
  − ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅ + ⋅  

  

(10) 

 

The above system of six first order non-linear ODEs is solved numerically 

following Livermore stiff ODE integrator which is based on a “predictor-corrector” 

method [4]. 

 

3.5.4   Applications 

 

This model is extremely useful for the investigation of the dynamic behaviour of 

hysteretic Lead Rubber Bearing (LRB) and Friction Pendulum Systems (FPS); it 

provides a unified base for the analyses of both types of isolators [6]. 

 

For a Lead Rubber Bearing (LRB) isolator, the restoring force is given by 

equation (1). The behaviour of the mass isolator in two directions is given by 

equation (7), (8). 

 

On the other hand, a Coulomb friction sliding system requires multiple stick – 

slip conditions that result into a complicated system of equations. However, a 

modified viscoplasticity model leads to a convenient formulation that describes 

accurately the behaviour of a sliding system, especially for Teflon – Stainless Steel 

interfaces, where the coefficient of friction increases with velocity. In this case, the 

friction force is determined as: 

 

 ( ) ( )sF t m g z tµ= ⋅ ⋅ ⋅  (11) 

 

with: 

 

 ( )( )max exp
s

f f a u tµ = −∆ ⋅ − ⋅ �  (12) 

 

where, maxf  is the coefficient at a large velocity of sliding, f∆  is the difference 

between the coefficient of friction at a large and a very low velocity of sliding and a  
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is a constant. Parameters maxf  and f∆  are generally dependent on bearing pressure, 

whereas a  is nearly independent of pressure. 

 

The dimensionless quantity ( )z t  follows again equation (2) and controls the stick 

– slip conditions. For slip conditions, ( ) maxz t z= ± , while for stick conditions 

(elastic behaviour) ( ) maxz t z< . maxz  depends on the Bouc-Wen parameters , ,A β γ  

and should be equal to 1± . 

 

Considering sliding on a spherical surface alters the above behaviour by adding 

the pendulum effect in the second equation of state space ODE system. For small 

values of ( )u t R  the restoring force of the pendulum effect may be expressed by 

the term ( )m g u t R− ⋅ ⋅ : 

 

 

Figure 12: Restoring force of the pendulum effect. 

 

3.5.5   Input data 

 

In order to input the data, select “Single Bidirectional > Options” from the “Linear 

Elastic Analysis” menu. The following form will appear: 

 

~u(t)

R

m g

m g u(t)/R

R
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Figure 13: Input data for an elastic 2DoF system. 

 

The data required for each of the two directions is described in detail for the case 

of SDF systems. 

 

3.3 Elastic response spectrum 
 

3.3.1   Calculations 

 

Given a range of periods for a SDOF system and the time step, mySpec can produce 

the elastic response spectrum of various response parameters for a specific excitation 

and / or earthquake. The response is calculated using Newmark’s method for each 

period. The mass of the SDOF system is needed in case of force excitations. Also, 

viscous damping may be taken into account. 

 

The program may trim the very small periods, or use a minimum time step 

because the iterative process is time consuming; for each period the full response of 

the SDF system must be calculated so that the peak values can be stored. 

 

MySpec can produce response spectra for the following quantities: 

 

o Deformation: The peak value of deformation D  for each period. 

o Pseudo velocity: The peak value of the pseudo velocity V  which is defined as 

n
V Dω= ⋅ , where 

n
ω  is the natural frequency and D  is the peak deformation 

of the same system. Pseudo velocity has units of velocity and it is related to 

the peak value of the strain energy 0s
E  stored in the system during the 

excitation, given by 2

0 2
s

E mV= . 
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o Pseudo acceleration: The peak value of the pseudo acceleration A  which is 

defined as 2

n
a Dω= ⋅ , where 

n
ω  is the natural frequency and D  is the peak 

deformation of the same system. Pseudo acceleration has units of acceleration 

and it is related to the peak value of base shear 0b
V  or the peak value of the 

equivalent static force 0s
f , given by 0 0b s

V f m A= = ⋅ . 

o Relative Velocity: The peak value of the relative velocity. 

o Acceleration: The peak value of the acceleration. 

 

3.3.2   Input data 

 

In order to input the data, select “Options” from the “Bouc Wen Analysis” menu. 

The following form will appear: 

 

 

Figure 14: Input data for the generic Bouc-Wen model. 

 

In the “General Data” frame, the following data is required: 

 

o Mass: The mass of the system. 

 

Both in the “X direction” and the “Y direction” frame, the following data is 

required: 

 

o 
y

F : The yield force of the system. 
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o 
y

U : The yield displacement of the system. 

o a : The ratio of post-yield to pre-yield (elastic) stiffness. Dimensionless. 

o c : The viscous damping. 

o Earthquake: In addition to or separately from the excitation, you can select 

the desired earthquake from the drop-down list box. Note that the modified 

form of the earthquake is used in the calculations. 

o Excitation: In addition to or separately from the earthquake, you can select 

the desired excitation from the drop-down list box. Note that the modified 

form of the excitation is used in the calculations. 

o Initial displacement: The initial displacement of the system. 

o Initial velocity: The initial velocity of the system. 

 

Note that the usage of an earthquake or an excitation is not compulsory; you can 

use an initial displacement or velocity instead to solve the free vibration problem.  

 

Concluding Remarks 
 

MySpec solves the free and forced vibration of SDOF and 2DOF systems for the 

linear and non-linear hysteretic behaviour that is common to a variety of structural 

and geotechnical problems. It reveals the main features of the hysteretic behaviour 

and introduces the user to the peculiarities of these systems in a didactic way. 
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