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Abstract

This paper presents the basic features of mySpec, a computer program that has been
designed to enhance learning in subjects that cover structural dynamics, earthquake
engineering and hysteretic systems in graduate and post-graduate level. The program
features a fully graphical interface with many interactive capabilities and covers the
following topics: linear elastic analysis, linear elastic response spectra, non-linear
analysis (bilinear) and Bouc-Wen hysteretic systems with arbitrary excitation force,
either alone or combined with an earthquake accelerogram. Viscous damping can be
used in all cases. The program is freely distributed through the Internet.

Keywords: Educational software, structural dynamics, earthquake engineering,
hysteretic systems, Bouc-Wen.

1 Introduction

Deeper understanding of the response of multi-degree-of-freedom structures under
dynamic excitation is of major importance for the Structural Engineer. This
knowledge is not always intuitive and may be assisted considerably by means of
interactive software that provides results for simplified systems, such as Single-
Degree-Of-Freedom (SDOF) systems or Two-Degree-Of-Freedom (2DOF) systems.

MySpec was written to provide the undergraduate and postgraduate student a
user-friendly computational tool that is capable of analyzing simple systems with
various simple or more advanced models and to provide results in a visual and
comprehensive way, thus revealing both qualitative and quantitative characteristics
of the response.



2 General features

2.1 Earthquake accelerograms

MySpec features an accelerogram library which can be loaded with earthquake
accelerograms. Each accelerogram can be modified, i.e. stretched with respect to
amplitude or duration, thus allowing the student to experiment with the response of
these systems.
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Figure 1: Earthquake accelerograms in mySpec.
2.2 Arbitrary force excitation

MySpec also features an arbitrary force library which can be loaded with force
histories. Similarly, each force history can be stretched with respect to amplitude or
duration. Moreover, the force excitation can be used either alone or combined with
an earthquake accelerogram.
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Figure 2: Arbitrary force excitation in mySpec.



2.3 Export results

MySpec uses double precision arithmetic and it is capable of exporting the results in
a standard fixed-length ASCII file. The data is therefore available for further
processing by other software, such as spreadsheet software.

2.4 Simulation of the response of SDF systems

MySpec is capable of simulating the response of SDF systems in a visual and
comprehensive way. The simulation form includes a sketch of the system as a
lumped mass on top of a massless column. If the excitation is an earthquake then the
motion of the ground is included. The user can select the simulation speed, has
direct control over the simulation progress while any diagram of interest can be
plotted on the screen as the simulation progresses, as for example in Fig.3.
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Figure 3: Simulation of the response of SDF systems.

2.5 Simulation of the response of 2DoF systems

MySpec is also capable of simulating the response of 2DoF systems. Similarly, the
system is sketched as a lumped mass on top of a massless column and if the
excitation is an earthquake then the motion of the ground is included. The user can
select the simulation speed, has direct control over the simulation progress, while
any diagram of interest can be plotted on screen either in X or Y direction as
presented in Fig. 4.
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Figure 4: Simulation of the response of 2DoF systems.

2.6 Newmark’s method

In many cases, the response of the system is calculated with the well-known
Newmark’s method. In 1959, N. M. Newmark developed a family of time stepping
methods, based on the following equations:
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Typical selection for y is 1/2. For S a selection in the range 1/6 < #<1/4 is
satisfactory. The following set of values is used for the average acceleration:
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Another set of values is used for the linear acceleration:

)

These set of values are directly related to the assumption of the variation of the
acceleration during the time step.



2.7 ODE integration

For the analysis of Bouc-Wen type hysteretic systems, mySpec uses a robust
Livermore stiff ODE integrator which is based on a “predictor-corrector” method

[4].
2.8 Analysis options

The analysis options are conveniently specified in one form, which appears by
selecting “Analysis” under the “Options” menu of the main form.

Time step - use the minimum of:

WV Exsitation's time step /[ Fiecommended value: 1

W Period / [25 Use Always - Recommended value: 25
v Absolte value [0z Use in combination with other criteria

Additional duration

Calculate the response for an additional duration of: 20 periods [Th]

Mewmark parameters

Beta [0 16e6600mm88E667 Dl between 1/6 and 174
Gamma [os Recommended valus: 05
Method W

Bous Wen parameters

Alpha: 1 Usually: 1.0
Beta o
Gamma: 0.9

Load Default Values

"7 Cancel

Figure 5: Analysis options.

In the “Time step — use the minimum of” frame, the user can set restrictions on
the maximum value of the time step used in the calculations. In general, the user
should not modify these settings as this may affect the accuracy of calculations.

In the “Additional duration” frame, the user can select the additional duration for
which the program should calculate the response. This period of time corresponds to
free vibration after the end of the excitation and provides also very interesting
results. All graphs are plotted with magenta colour for the forced motion, followed
by green colour for the duration of the free vibration.

In the “Newmark parameters” frame, the user can select the parameters £ and y
of Newmark’s method.

In the “Bouc Wen parameters” frame, the user can select the parameters A, S,y of
Bouc Wen model [2], [3].



3  Analysis
3.1 Linear elastic analysis for an SDF system

3.1.1 Model

The equation of motion for a viscously damped linear elastic SDF system is the
following:

m-ii+c-u+k-u=p(t)

Where u is the relative displacement of the system, m-ii is the inertia force, c-u
is the damping force, ¢ is the viscous damping coefficient, k-u is the spring force

and p(t) is the external dynamic force [1].

In case of an earthquake, the external dynamic force is p(t) =-m-i, (t), where
i, (t) is the ground acceleration. The ground displacement u, (t) is a function of
time, whereas the total (or absolute) displacement ul(t) is the sum of the ground

displacement u, (¢) and the relative displacement u(¢) of the system at all times.

Figure 6: Total displacement of a SDOF system.

The linear elastic response is calculated following the well-known Newmark’s
Method.

3.1.2 Input data

In order to input the data, select “Single Unidirectional > Options” from the “Linear
Elastic Analysis” menu. The following form will appear:



Linear elastic analysis - Unidirectional options
SDF Properties Properties
Mass: |1 |kg j Period Tr: 2 se0
Stiffness: |5 8596044 [tm B Poiod Td: i -
Period T 2 sec [Modify: (¢ Shffress © Mass]
C: 0314
Damping Ratio: |5 %
Earthquake: |E| Centro.egk j (gl 3142 L2
E xcitation [WoNE v| | OmegsD: 3138 Hz

Figure 7: Input data for an elastic SDF system.

The data required is the following:

O

Mass: The mass of the SDF system.
Stiffness: The stiffness of the SDF system.
Period: The natural period 7, of the system in seconds, which is calculated as

T,=2-7-\mfk .

Damping ratio: The damping ratio ¢ of the system, in percentage (%). The
damping ratio (or fraction of critical damping) is defined as ¢ =c/c,, . The
critical damping coefficient is defined as ¢, =2-m-@, =2-m-\/k/m, where

o, 1s the natural frequency. The critical damping coefficient is used in

n

viscously damped vibrations. For example, the equation governing viscously
damped free vibration of a SDF system is ii +2-¢ -, ‘i + @, -u=0.

Earthquake: In addition to or separately from the excitation, you can select
the desired earthquake from the drop-down list. Note that the modified form
of the earthquake is used in the calculations.

Excitation: In addition to or separately from the earthquake, you can select
the desired excitation from the drop-down list. Note that the modified form of
the excitation is used in the calculations.

The “properties” frame contains the following data:

O

o

Period T, : The natural period of the system in seconds, which is calculated as

T =2-7-\mfk .

Period T,: The natural period of damped vibration in seconds, which is

related to T, by : T, :TH/JI—{Z :
c: The damping coefficient, which is related to the damping ratio { by:
c=2-m-w,-¢.



o OmegaN: The natural frequency @, of the SDF system, which is given by:
o, = Jk/m .
o OmegaD: The natural frequency of damped vibration @, of the SDF system,

which is related to the undamped natural frequency @, by: @, =@, -A[1-¢* .
3.2 Linear elastic analysis for a 2DoF system
3.2.1 Model
For the case of 2DoF systems, the equations of motion are uncoupled and have the
same form as the case of the SDF system while Newmark’s method is used for the
calculation of the response.

3.2.2 Input data

In order to input the data, select “Single Bidirectional > Options” from the “Linear
Elastic Analysis” menu. The following form will appear:

Linear elastic analysis - Bidirectional options

General Data

Mass: [1 [ka |

 Direction

Stiffress: |3.8636044 [im |

Period Tr: 2 360 [Modify: © Stiffress ¢ Mass)
Damping Ratio: |3 k4

Earthquake: |EI Centro.eqk j
Excitation: |NEINE ﬂ
' Direction

Stiffress. [394784176  [nom |

Period Tr 1 s80 [Modify: & Stiffress O Mass ]
Damping Ratio: |1 k4

E arthquake: |EI Centro.eqk j
Eniitation: |NDNE j

pe—

Figure 8: Input data for an elastic 2DoF system.

The data required for each of the two directions is described in detail for the case
of SDF systems.

3.3 Elastic response spectrum

3.3.1 Calculations



Given a range of periods for a SDOF system and the time step, mySpec can produce
the elastic response spectrum of various response parameters for a specific excitation
and / or earthquake. The response is calculated using Newmark’s method for each
period. The mass of the SDOF system is needed in case of force excitations. Also,
viscous damping may be taken into account.

The program may trim the very small periods or use a minimum time step
because the iterative process is time consuming; for each period the full response of
the SDOF system must be calculated so that the peak values can be stored. MySpec
can produce response spectra for the following quantities:

O
O

o
(@)

3.3.2

Deformation: The peak value of deformation D for each period.
Pseudo velocity: The peak value of the pseudo velocity V which is defined as
V =w,-D, where o, is the natural frequency and D is the peak deformation

of the same system. Pseudo velocity has units of velocity and it is related to
the peak value of the strain energy E , stored in the system during the
excitation, given by E,=mV?/2.

Pseudo acceleration: The peak value of the pseudo acceleration A which is
defined as a=w,>- D, where @, is the natural frequency and D is the peak
deformation of the same system. Pseudo acceleration has units of acceleration
and it is related to the peak value of base shear V,, or the peak value of the
equivalent static force f,,, givenby V, = f ,=m-A.

Relative Velocity: The peak value of the relative velocity.
Acceleration: The peak value of the acceleration.

Input data

In order to input the data, select “Response Spectrum > Options” from the “Linear
Elastic Analysis” menu. The following form will appear:

Linear, Spectral Analysis - Options

Froperties
Minimum period: 'Ui B0
M axirmum period: '37 380
Period time step: 'UU57 3EC
[ramping: '27 4
Mazs: |U |kg j

E arthiquake: | El Centro.eqk j
Excitation: [NONE -

Figure 9: Input data for an elastic response spectrum.



The data required is the following:

Minimum period: The minimum period of the range, in seconds.

Maximum period: The maximum period of the range, in seconds.

Period time step: The time step, in seconds.

Damping: The damping ratio ¢ of the system, in percentage (%). The

0O O O O

damping ratio (or fraction of critical damping) is defined as ¢ =c/c,, . The

critical damping coefficient is defined as ¢, =2-m- @, , where @, =/k/m is
the natural frequency.

o Mass: The mass of the SDF system. This is required in case of force
excitations.

o Earthquake: In addition to or separately from the excitation, you can select
the desired earthquake from the drop-down list. Note that the modified form
of the earthquake is used in the calculations

o Excitation: In addition to or separately from the earthquake, you can select
the desired excitation from the drop-down list. Note that the modified form of
the excitation is used in the calculations

3.4 Non-linear analysis (bilinear model) for an SDOF system
3.4.1 Model

MySpec evaluates the nonlinear response based on a generic bilinear model. A
typical bilinear force - displacement model is shown below:

Figure 10: Generic bilinear model.

The system is linearly elastic with stiffness & up to the yield force. For
displacement bigger than u the system responds with a constant hardening stiffness
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k,. In the unloading branch, the system regains its initial stiffness k. The yield
strength f and the hardening stiffness k, may be different for the positive and

negative directions of loading. Also, if the system has yielded and is unloaded, the
new elastic branch has the same yield strength range as the initial values i.e.

fy_pos + ‘fr.neg

of the hardening stiffness.

but may be displaced in the positive or the negative direction because

The response is calculated with the well-known Newmark Method. In general,
Newmark’s method is very satisfactory in terms of accuracy. Since the time step is
constant, two are the main sources of error:

o The tangent stiffness is used instead of the (actual) secant stiffness in the
calculation of the incremental resisting force. The secant stiffness cannot be
used because it is not known.

o The detection of the transitions in the force — deformation relationship is
inaccurate. This inevitably leads to error accumulation.

MySpec addresses these errors by using a small time step which can be modified
by the user and by modifying the time step at the transitions from the elastic to
inelastic branch and vice versa. In the first case i.e. the transition from the elastic to
the inelastic branch, the condition is that the resisting force equals the yield strength:
f. = fy, whereas in the second case i.e. the transition from the loading to the

unloading branch, the condition is that the velocity is zero: # =0. When a transition
is detected, the time step is continuously divided by two, in order to detect the
transition point accurately. When the corresponding condition is met to a certain
accuracy, the algorithm continues to the next time step.

3.4.2 Input data

In order to use the bilinear model, select “Options” from the “Non Linear Analysis
(Bilinear)” menu. The following form will appear:

Non linear analysis - Unidirectional options.

SDF Fropetties

Mass: [o ke -

Stifness: IO [Hm -

Period Tn T e [Modiy: @ Stiffness (" Mass ]
Posttive ield N

Positive Hardening Stffness: |2 |N/m -

Negative Yield: W A

Wegative Hardening Stifness: [10 |N/m -

Damping Ratio: =

Earthquake: [EI Certro.cak
Excitation, [nonE

Figure 11: Input data for the bilinear model.
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In the “SDF Properties” frame, the following data is required:

O

Mass: The mass of the SDF system.
Stiffness: The stiffness of the SDF system
Period: The natural period 7, of the system in seconds, which is calculated as

T, =2-7-\mk

Positive yield: The positive yield strength of the system.

Positive hardening stiffness: The positive hardening stiffness of the system
Negative yield: The negative yield strength of the system (use positive
values).

Negative hardening stiffness: The negative hardening stiffness of the system
(use positive values).

Damping: The damping ratio ¢ of the system, in percentage (%). The

damping ratio (or fraction of critical damping) is defined as ¢ =c/c,, . The
critical damping coefficient is defined as ¢, =2-m- @, , where @, =/k/m is
the natural frequency.

Earthquake: In addition to or separately from the excitation, you can select
the desired earthquake from the drop-down list. Note that the modified form
of the earthquake is used in the calculations

Excitation: In addition to or separately from the earthquake, you can select
the desired excitation from the drop-down list. Note that the modified form of
the excitation is used in the calculations

3.5 Non-linear analysis (Bouc Wen model) for a 2DoF system

3.5.1 Introduction

MySpec evaluates the nonlinear response for a 2DoF system based on a generic

Bouc-Wen Model. This hysteretic or memory — dependent model is very popular
because of its versatility and simplicity; it is a very concise model governed by a
single differential equation. This was first introduced by Bouc in 1967 [2]. In 1976,
Wen [3], extended the model and demonstrated its versatility by producing a variety
of hysteretic patterns.

3.5.2 SDOF System

The restoring force of a SDOF system can be written as:

F(t)=a-22u(t)+(1-a)-F, 2(1) (1)
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where, F is the yield force, u, is the yield displacement, a is the ratio of post-

yield to pre-yield (elastic) stiffness and z(t) is a dimensionless hysteretic parameter
satisfying the following nonlinear differential equation:

Z(l) :uiv[A—‘z(t)n -(y-sign(u(t)-z(t))+ﬂ)]u(t) (2)

where, A,f,y,n are dimensionless quantities controlling the shape of the

hysteretic loop. In particular, small value of n implies smooth transition from the
elastic to the plastic branch, whereas a large value of n (n>10) results into an
abrupt transition and the model is similar to a bilinear one. The equation of motion
for a SDOF system with external viscous damping c¢ is given as:

m-ii(t)+c-u(t)+F (1) = f(1) 3)

where, u(r) is the displacement, F(¢) is the restoring force, f(¢) is the
excitation force. Substituting (1) into (3) we obtain:

m-b'i(t)+c-b't(t)+a-f—’:-u(t)+(l—a)-Fy-Z(t)zf(t) @

Equations (2) and (4) are transformed into a state-space form as follows:

x,(1)=u(t) ()

x, (1)
% (1)l = —%-l:c-xz(t)+a-£-xl(t)+(1—a)-Fy-x3(t)—f(t):l ®)

u

y

L [(A=ls (0 -r-sn(ss (05, 0))+ ) 0]

y

The above system of three first order non-linear ODEs is solved numerically
following Livermore stiff ODE integrator which is based on a “predictor-corrector”
method [4].
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3.5.3 2DoF Model

Extending the above equations for a 2DoF system, the equations of motion in two
directions x and y are two ODEs of second order in time:

_m O I;ix Cx O ux ax ’ Fy x/uy X O ux
SRS ST . ST
L O m u}' 0 C,V u}' O a}' ) F;»Y/MY»}' u}'

0 e

These equations are coupled through the dimensionless hysteretic variables
z,(1), z,(t) which are governed by the system of non-linear equations:

{;{ .uy,x}: A.{Lf"}—
Z)’ 'I/ty,y u)’

ZXZ -(7/-sign(b'tx-zx)+,8) 2,2, -(7/-sign(b'ty -z},)+ﬁ) {“x}

(7)

8)

u,

Z.°Z, -(7/-sign(b'tx-zx)+,8) Zy2 -(7/-sign(b'ty -zy)+ﬁ)

These equations were developed by Park et al. [5]. For the above system of
equations n=2. Equations (7) and (8) are converted in state space form by
introducing additional equations as follows:

A =U,
X, =,
X3 =2, )
X, =u,
Xs=U,
.x6 = Zy

14



X

1 F, .
——-{cx-x2+ax- > -x1+(1—ax)-Fy’X-x3—fx:l

i m Uy,
X, [A-xz—x32-(7/-sign(x2-x3)+ﬂ)-x2—x3-x6-(7-sign(x5-x6)+,6’)-x5]
Bl e (10)
X, Xs

X; 1 F

i, —Z-l:cy-x5+ay-uj:i -x4+(1—ay)-Fy’y-x6—f)}

[A-xs—x3-x6-(7-sign(x2-x3)+ﬂ)-x2—x62-(7-sign(x5-x6)+,6’)-x5]

uy,y

The above system of six first order non-linear ODEs is solved numerically
following Livermore stiff ODE integrator which is based on a “predictor-corrector”
method [4].

3.5.4 Applications

This model is extremely useful for the investigation of the dynamic behaviour of
hysteretic Lead Rubber Bearing (LRB) and Friction Pendulum Systems (FPS); it
provides a unified base for the analyses of both types of isolators [6].

For a Lead Rubber Bearing (LRB) isolator, the restoring force is given by
equation (1). The behaviour of the mass isolator in two directions is given by
equation (7), (8).

On the other hand, a Coulomb friction sliding system requires multiple stick —
slip conditions that result into a complicated system of equations. However, a
modified viscoplasticity model leads to a convenient formulation that describes
accurately the behaviour of a sliding system, especially for Teflon — Stainless Steel

interfaces, where the coefficient of friction increases with velocity. In this case, the
friction force is determined as:

F(r)=p,-m-g-2() (11)
with:
wo=f —Af-exp(—a-\u(r)\) (12)

where, f  1is the coefficient at a large velocity of sliding, Af is the difference
between the coefficient of friction at a large and a very low velocity of sliding and a
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is a constant. Parameters f

max

whereas a is nearly independent of pressure.

and Af are generally dependent on bearing pressure,

The dimensionless quantity z(t) follows again equation (2) and controls the stick

— slip conditions. For slip conditions, z(r)=zz,, , while for stick conditions

max *

Z... depends on the Bouc-Wen parameters A, S,y

max *

(elastic behaviour) ‘z(t)‘ <z

and should be equal to +1.

Considering sliding on a spherical surface alters the above behaviour by adding
the pendulum effect in the second equation of state space ODE system. For small

values of u(t)/ R the restoring force of the pendulum effect may be expressed by

the term —m- g -u(t)/R:

~u(t)

m g u(k/ \

Figure 12: Restoring force of the pendulum effect.
3.5.5 Input data

In order to input the data, select “Single Bidirectional > Options” from the “Linear
Elastic Analysis” menu. The following form will appear:

16



Linear elastic analysis - Bidirectional options

General Data

Mass: |1 |kg j

# Direction

Stiffress: |3.8656044 [N |

Period Tr: ,27 E [ Modify: © Stiffress ¢ Mass)
Damping Ratio: |3 %

Earthquake: |E| Centro.eqk ﬂ
Exeitation: |NDNE j

' Direction

Stitfress: [30.4734176  [nm |

Period T ,77 sBC [Modify: @ Stiffness ¢ Mass ]
D amping i atio: ,77 %

Earthqual.e: |EI Centro.eqk j
Excitation: |NDNE ﬂ

Cancel

Figure 13: Input data for an elastic 2DoF system.

The data required for each of the two directions is described in detail for the case
of SDF systems.

3.3 Elastic response spectrum
3.3.1 Calculations

Given a range of periods for a SDOF system and the time step, mySpec can produce
the elastic response spectrum of various response parameters for a specific excitation
and / or earthquake. The response is calculated using Newmark’s method for each
period. The mass of the SDOF system is needed in case of force excitations. Also,
viscous damping may be taken into account.

The program may trim the very small periods, or use a minimum time step
because the iterative process is time consuming; for each period the full response of
the SDF system must be calculated so that the peak values can be stored.

MySpec can produce response spectra for the following quantities:

o Deformation: The peak value of deformation D for each period.
o Pseudo velocity: The peak value of the pseudo velocity V' which is defined as
V =w,-D, where o, is the natural frequency and D is the peak deformation

of the same system. Pseudo velocity has units of velocity and it is related to
the peak value of the strain energy E , stored in the system during the

excitation, given by E ,=mV?/2.
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o Pseudo acceleration: The peak value of the pseudo acceleration A which is

defined as a=w,”- D, where @, is the natural frequency and D is the peak

deformation of the same system. Pseudo acceleration has units of acceleration
and it is related to the peak value of base shear V,, or the peak value of the

equivalent static force f,,, givenby V, = f,=m-A.

o Relative Velocity: The peak value of the relative velocity.
o Acceleration: The peak value of the acceleration.

3.3.2 Input data

In order to input the data, select “Options” from the “Bouc Wen Analysis” menu.
The following form will appear:

General Optiong
M ass: |2.EE |kg ﬂ
# Direction
Fyr 288 N |
Uy: [o:111 [ |
a 0.1
@ |D |N.secfm j
Eanthquake: [noME ~|
Excitation |NDNE j
Initial Displacement: |1 |m ﬂ
Initial Welocity: |4 |m.-’sec j
" Direction
Fy: 2.5 [N |
Uy: [Da11 [ =]
a 0.1
c [o [Msecim |
Earthquake: |NDNE j
Excitation: |NDNE j
Initial Displacement: |1 |m j
Iritial Velacity |2 [rnsec |
Cancel

Figure 14: Input data for the generic Bouc-Wen model.

In the “General Data” frame, the following data is required:

o Mass: The mass of the system.

Both in the “X direction” and the “Y direction” frame, the following data is
required:

(@)

F,: The yield force of the system.

18
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(@)
o

U, : The yield displacement of the system.

a : The ratio of post-yield to pre-yield (elastic) stiffness. Dimensionless.

¢ : The viscous damping.

Earthquake: In addition to or separately from the excitation, you can select
the desired earthquake from the drop-down list box. Note that the modified
form of the earthquake is used in the calculations.

Excitation: In addition to or separately from the earthquake, you can select
the desired excitation from the drop-down list box. Note that the modified
form of the excitation is used in the calculations.

Initial displacement: The initial displacement of the system.

Initial velocity: The initial velocity of the system.

Note that the usage of an earthquake or an excitation is not compulsory; you can
use an initial displacement or velocity instead to solve the free vibration problem.

Concluding Remarks

MySpec solves the free and forced vibration of SDOF and 2DOF systems for the
linear and non-linear hysteretic behaviour that is common to a variety of structural
and geotechnical problems. It reveals the main features of the hysteretic behaviour
and introduces the user to the peculiarities of these systems in a didactic way.

References

[1]

[2]

Anil K. Chopra, “Dynamics of Structures, Theory and applications to
earthquake engineering”, second edition, ISBN 0-13-086973-2, Prentice Hall,
2001.

R. Bouc, “Forced vibration of mechanical systems with hysteresis”,
Proceedings of the Fourth Conference on Non-linear oscillation, Prague,
Czechoslovakia, 1967.

Y. K. Wen, “Method for random vibration of hysteretic systems”, J. Eng.
Mech. ASCE 102, 249-263, 1976.

Alan C. Hindmarsh Scientific Computing, “ODEpack, a Systemized
Collection of ODE solvers”, R. S. Stepleman et al. (eds.) North-Holland,
Amsterdam, 1983.

Park, Y., J., We,, Y. K. and Ang, A.H.S., “Random vibration of hysteretic
systems under bidirectional ground motion”, Earthquake engineering and
structural dynamics, 14(4), 543-557, 1986.

Koumousis V. K, “Non-Linear Dynamic Behaviour of Base-Isolators”,
Proceedings of the 3rd HSTAM Conference, 19-21 July, Thessaloniki.
Constantinou, M. C., Mokha, A. and Reinhorn, A.M, “Teflon bearings in
base isolation II: Modeling”, J. Struct. Engrg. ASCE, 116(2), 455-474, 1990.
Tsai, C. S., Tsu-Cheng Chiang, Bo-Jen Chen and Shih-Bin Lin, “An
advanced analytical model for high damping rubber bearings”, Earthquake
Engrg. Struct. Dyn., 32(9), 1373-1387, 2003.

19



