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Abstract 

 

 

A generic fiber model algorithm for the analysis of cross sections under biaxial bending 

and axial load is presented. The method is applied to any cross section (reinforced, 

composite, repaired etc.) of irregular shape with/without openings and consisting of 

various materials. The only assumption is that plane sections before bending remain 

plain after bending (Bernoulli – Euler assumption). The cross section is described by 

polygons and circles. The material properties are user – defined. The stress – strain 

diagrams of all materials are composed of any number and any combination of 

consecutive parabolic or linear parts, subject to a desired accuracy. Various effects such 

as concrete confinement, concrete tensile strength, strain hardening of the reinforcement 

etc. may be taken into account, allowing full control of the designer over the entire 

model. A special purpose computer program with full graphical interface has been 

developed the main features of which are illustrated in a number of examples. 

 

 

1. Introduction 

 

The failure of an arbitrary cross-section under biaxial bending and axial load has 

received extensive attention in the literature lately [1-5]. With the advent of inexpensive 

computer systems, the generation of the failure surface has been made possible using 

the “fiber” approach. This approach produces consistent results that agree closely with 

experimental results [4].  

 

The failure of the cross section corresponds to the top of the moment – curvature 

diagram. However, the conventional failure, defined by design codes, occurs when any 

of the materials reaches its predefined maximum allowable strain, either compressive or 

tensile. Usually, these strains are the yield strains of concrete and steel. 

 

The failure surface is important for non-linear analyses since the plastic deformations of 

a structural element are functions of the load history and the distance of the load vector 

from the surface. Moreover, it provides grounds for a damage analysis for the cross 

section. 

 

 

2. Generation of failure surface 

 

There are three different techniques to generate the failure surface of an arbitrary cross 

section: (1) interaction curves for a given bending moments ratio, (2) load contours for a 

given axial load and (3) isogonic or 3D curves. 
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The first two techniques require the calculation of the position of the neutral axis. The 

set of equilibrium equations are non linear and coupled, and an iterative approach such 

as the quasi-Newton method proposed by Yen [6], is needed to determine the position 

of the neutral axis. These procedures are not straightforward to implement and, in many 

cases, are sensitive to the selection of the origin of the reference system. These 

algorithms usually become unstable near the state of pure compression.  

 

On the other hand, the third technique, which is used in the method presented, is more 

direct because the direction of the neutral axis is assumed from the very beginning. The 

produced points describe a more complex 3D plot, because the meridians, in general, 

are not plane. This is due to the asymmetry of the cross section, as described later.  

 

 

3. Cross Section 

 

The cross section is described by polygons and circles. Arcs are approximated by 

polygon chains to a specified accuracy. All graphical objects must not intersect. 

 

Importing a cross section from a DXF file may produce the following: 

 

 
 

All graphical objects have two material properties: the “foreground” material and the 

“background” material. The foreground material is taken into account with a positive 

sign during the calculation of the stress resultants, whereas the background material is 

taken into account with a negative sign. In this way, complex cross sections may be 

described easily, by assigning the correct layer of each graphical object. In the previous 

example, the material properties are set as follows: 
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Object Foreground material Background material 

Polygon 1 Unconfined (outer) concrete  None 

Polygon 2 Confined (inner) concrete Unconfined (outer) concrete 

Polygon 3 Structural steel Confined (inner) concrete 

Circle 1 None Structural steel 

Circle 2 Structural steel Confined (inner) concrete 

Circles 3 - 17 Reinforcement Confined (inner) concrete 

Circles 18 - 31 Reinforcement Unconfined (outer) concrete 

 

 

4. Materials 

 

The stress – strain diagrams of all materials are composed of any number and any 

combination of consecutive parabolic or linear segments. The parabolic segments are 

defined by three consecutive points, i.e. an intermediate point in addition to the end 

points. The intermediate point need not be in the middle. For example, the stress strain 

diagram of a certain kind of steel may be as follows: 

 

 
 

Apart from the stress – strain diagram, the material structure holds data related to the 

maximum compressive and tensile strain and whether reach of these values signifies the 

conventional failure of the cross section.  

 

 

5. Calculations 

 

The combination of polygons and circles covers almost all cases of arbitrary defined 

cross sections. Arcs may be approximated by a series of straight lines; however, if the 

arc is not significant, as is the case of small radius fillets between lines, it is 

recommended that it is approximated by a single straight line. 

 

Any convenient point may be used as origin for the calculations. Since the direction of 

the neutral axis is assumed from the beginning, it is convenient to express all 

coordinates to another YZ  Cartesian system with the Y  axis parallel to the neutral axis. 

Therefore, the cross section is rotated around the origin by an angle θ− , as shown in fig 

5.1, by a simple rotational transformation, expressed by (5.1). 
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Fig. 5.1. Rotation around the origin 
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Since the direction of the neutral axis is assumed, the stresses vary only in the Z axis. 

 

The next step is the trapezoidal decomposition of all polygons, which is accomplished 

using the “plane sweep algorithm”. The trapezoids are parallel to the neutral axis. This 

procedure needs to be done only once for each assumed direction of the neutral axis; 

this basic set of trapezoids may be stored and retrieved when needed. For example, the 

steel section will be decomposed as shown in fig 5.2. 

 

 
Fig. 5.2. Trapezoidal decomposition of a steel section. 

 

The strain distribution over the cross section is controlled by two variables i.e. the strain 

c
ε  at the origin and the curvature k ; therefore, the strain at each point at the cross 

section is given by (5.2). 

 

 
c

k zε ε= + ⋅   (5.2) 

 

For the calculation of the stress resultants produced by a certain material, the exact z  

coordinates of the transition points i.e. the points between linear and / or parabolic parts 

of the stress – strain diagram, can be calculated. The basic set of trapezoids is now 

further decomposed into smaller trapezoids, based on these coordinates. Furthermore, 

the circles are decomposed into strips parallel to the Y  axis. 
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The stress resultants for the trapezoids are then calculated as follows (fig. 5.3): 

 

 
Fig. 5.3. Calculation of stress resultants for a trapezoid 

 

The force and the coordinate 
r

z ′  of the centroid are calculated by integration of the 

stress diagram along the Z ′  axis. The 
r

y ′  coordinate of the stress resultant can be found 

geometrically, as it is the intersection point of the median connecting the top and bottom 

sides of the trapezoid and the horizontal line at distance 
r

z ′  from the bottom fiber. 

 

The width of the trapezoid can be expressed as a function of z′  (eq. 5.3). Also, we 

assume that the stress distribution over the trapezoid is parabolic, which is the general 

case (eq. 5.4). 

 

 1 0l l
l a z a′= ⋅ +   (5.3) 

 2

2 1 0a z a z aσ σ σσ ′ ′= ⋅ + ⋅ +   (5.4) 

 

The force, moment around the Y ′  axis and the 
r

z ′  coordinate of the centroid are given 

by equations (5.5). 
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Similarly, the stress resultants for the circles are calculated as follows (fig. 5.4): 
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Fig. 5.4. Calculation of stress resultants for a circular section 

 

The force and the coordinate 
r

z ′  of the centroid are calculated by integration of the 

stress diagram along the Z ′  axis. The stress resultant lies on the Z ′  axis due to 

symmetry. 

 

The width can be expressed as a function of z′  (eq. 5.6). As previously, we assume that 

the stress distribution over the trapezoid is parabolic, which is the general case (eq. 5.4). 

 

 2 22l R z′= ⋅ −   (5.6) 

 

where, R  is the radius of the circle. Assuming that the z′  coordinates of the bottom and 

top fiber are 1z′  and 2z′  respectively, the force, moment around the Y ′  axis and the 
r

z ′  
coordinate of the centroid are given by equations (5.7). 
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6. Construction of moment – curvature diagram 

 

For given values of axial load and angle θ , small increments ϕ∆  are applied as 

imposed curvature. Since the curvature k  of eq. 5.2 is given, the algorithm uses a fast 

Newton – Raphson method to calculate the strain 
c
ε  at the centroid in order to achieve 

axial equilibrium to a specified accuracy. 

 

As the curvature increases, the neutral axis moves perpendicular to its direction. This 

incremental procedure continues until the primary moment diagram reaches a maximum 

(failure) or until one of the materials reaches the maximum compressive or tensile strain 

specified by the user (conventional failure). Thus, the complete moment – curvature 

diagram can be obtained, both for the primary moment 
y

M  and for secondary moment 

z
M . 

 

The algorithm uses a variable curvature step; therefore, the final result is independent of 

the initial curvature step (specified by the user). A small initial curvature step produces 

a smooth moment – curvature diagram. 

 

Finally, the moments can be expressed in the global reference system with a rotational 

transformation (eq. 6.1). 

 

 
( ) ( )
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= ⋅    −     

  (6.1) 

 

 

7. Construction of failure surfaces 

 

By repeating the procedure described previously for different directions θ  of the neutral 

axis in the range of 0 – 359
0
, we are able to construct the failure surfaces equator by 

equator. 

 

 

8. Computer implementation 

 

A computer program, called myBiAxial, which implements the method presented, has 

been developed. The program features a full graphical interface. It is also capable of 

importing cross sectional data from DXF files. Some screenshots are the following: 
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9. Validation – examples 

 

9.1 Example 1 

 

Eurocode 2 provides design charts for common reinforced concrete cross sections. 

These charts provide combinations of axial loads and their respective ultimate bending 

moment capacities (which correspond to the conventional failure of the cross section), 

for a range of longitudinal reinforcement expressed by the mechanical reinforcement 

percentage ω  (eq. 9.1.1). 
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,

,
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fA

A f
ω = ⋅  (9.1.1) 

 

where ,s tot
A  is the total area of longitudinal reinforcement, ,c tot

A  is the total area of 

concrete, 
yd

f , 
cd

f  are the design strengths of steel and concrete respectively. Also, the 

axial load and bending moment are normalized with respect to the concrete properties 

and the cross sectional dimensions (eq. 9.1.2); therefore, a single chart covers all cases 

for a certain steel grade. 

 

 
,

,

d

c tot cd

d

c tot cd

N
v

A f

M

A h f
µ

=
⋅

=
⋅ ⋅

 (9.1.2) 

 

Eurocode 2 specifies the value of 0.020  as the ultimate strain limit for longitudinal steel 

reinforcement. Also, for large compressive axial loads, it reduces the ultimate curvature 

capacity by imposing the rotation of the strain profile around point C  which is located 

at a distance 
3

7
h  from the most compressed fiber and has a strain of 0 0.002ε = − . This 

restriction is included easily in the algorithm; however, it is of little practical interest 

since large compressive axial loads in concrete cross sections must be avoided for other 

reasons i.e. creep. 

 

The developed computer program was used to calculate pairs of axial loads and bending 

moments for the rectangular cross section of fig. 9.1.1(a). The characteristic strengths 

and partial safety factors for concrete and reinforcement bars were taken as follows: 

 

20 , 1.5

500 , 1.15

ck c

y r

f MPa

f MPa

γ

γ

= =

= =
 

 

Five different cases of longitudinal reinforcement were considered, i.e. 

0.00,  0.50,  1.00,  1.50,  2.00ω = . The corresponding design chart is shown in fig. 

9.1.2(b). 
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(a) (b) 

  

Fig. 9.1.1. (a) Rectangular reinforced concrete cross section (distances in mm)  

(b) Corresponding Eurocode 2 design chart (steel grade S500) 

 

The computed results, summarized in table 9.1.1, follow the corresponding ω  curve 

exactly, as shown in fig. 9.1.2. 

 

v   ( 0)µ ω =   ( 0.50)µ ω =   ( 1.00)µ ω =   ( 1.50)µ ω =   ( 2.00)µ ω =  

1.60     0.1607 

1.40    0.0402 0.2408 

1.20    0.1203 0.3219 

1.00    0.2007 0.4031 

0.80   0.0801 0.2823 0.4841 

0.60   0.1613 0.3636 0.5645 

0.40  0.0400 0.2433 0.4440 0.6441 

0.20  0.1228 0.3237 0.5232 0.7230 

0.00 0.0000 0.2031 0.4020 0.6015 0.8016 

-0.10 0.0424 0.2412 0.4406 0.6402 0.8397 

-0.20 0.0746 0.2748 0.4739 0.6728 0.8717 

-0.30 0.0951 0.2939 0.4920 0.6903 0.8883 

-0.35 0.1010 0.2988 0.4967 0.6944 0.8919 

-0.40 0.1033 0.2943 0.4883 0.6828 0.8775 

-0.60 0.0824 0.2465 0.4287 0.6176 0.8091 

-0.80 0.0193 0.1938 0.3690 0.5526 0.7409 

-1.00  0.1292 0.3072 0.4875 0.6729 

-1.20  0.0548 0.2406 0.4214 0.6047 

-1.40   0.1670 0.3525 0.5358 

-1.60   0.0897 0.2792 0.4652 

-1.80    0.2030 0.3921 
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-2.00    0.1245 0.3159 

-2.20     0.2384 

-2.40     0.1595 

 

Table. 9.1.1. Computed results  

 

 
Fig. 9.1.2. Computed results superimposed over the EC2 design chart 

 

9.2 Example 2 

 

This is an example presented by Chen et al. [4], which invokes the polygonal composite 

column cross section of figure 9.2.1. The cross section consists of a concrete core, an 

asymmetrically placed H – shaped steel section, 15 reinforcement bars of diameter 

18mm and a circular opening. 
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Fig. 9.2.1. Composite column cross section 

 

Chen et al. use a quasi – Newton method [6] to analyze the cross section. However, the 

convergence of the iterative process invoked by the algorithm cannot be guaranteed 

when dealing with large axial loads i.e. loads that approach the axial load capacity under 

pure compression. In order to ensure the stability of the algorithm, the plastic centroid 

must be used as the origin of the Cartesian system. For an arbitrary cross section, the 

plastic centroid can be calculated as follows: 

 

 

c c cc s s s r r r

c s r
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c cc s s r r

c s r
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c s r
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Y A f Y A f Y A f

Y
A f A f A f
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Z
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γ γ γ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ +
=

⋅ ⋅ ⋅+ +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ +
=

⋅ ⋅ ⋅+ +

 (9.2.1) 

 

where, 
c

A , 
r

A , 
s

A  are the total areas of concrete, reinforcing bars and structural steel 

respectively; 
cc

f , 
r

f , 
s

f  are the respective characteristic strengths; 
cc
γ , 

r
γ , 

s
γ  are the 

respective partial safety factors, 
c

Y , 
c

Z , 
r

Y , 
r

Z ,
s

Y , 
s

Z , are the coordinates of the 

respective centroids. In this case, the coordinates of the plastic centroid with respect to 

the bottom left corner are [4]: 

 

292.2 ,  281.5
pc pc

Y mm Z mm= =  

 

The stress – strain curve for concrete (CEC 1994) which consists of a parabolic and a 

linear (horizontal) part was used in the calculation, with 0.85 /
cc ck c

f f γ= ⋅ , 0 0.002ε =  
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and 0.0035
cu
ε = . The Young modulus for all steel sections was 200GPa while the 

maximum strain was 0.010
u
ε = ± . 

 

The characteristic strengths and partial safety factors for concrete, structural steel and 

reinforcement bars were taken as follows: 

 

30 , 1.5

355 , 1.1

460 , 1.15

ck c

s s

y r

f MPa

f MPa

f MPa

γ

γ

γ

= =

= =

= =

 

 

The analysis was carried out with an angle step of 5 degrees. 

 

 
 

Fig. 9.2.2. Example 9.2 in MyBiAxial 

 

 
 

Fig. 9.2.3. MYc - MZc interaction curve for compressive axial load NX=4120KN 
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Fig. 9.2.4. MYc - MZc interaction curve for compressive axial load NX=4120KN,  

showing the full path for each analysis. 

 

 
 

Fig. 9.2.5. MYc - MZc interaction curve for compressive axial load NX=4120KN,  

with an initial curvature step of 1.0E-06. 
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Fig. 9.2.6. Complete conventional failure surface. 

 

 

Figure 9.2.3 shows the results of this method superimposed over the results taken from 

[4]. 

 

Figure 9.2.4 shows the full path for each analysis. Each spike is produced as the angle 

of the neutral axis is increased by 5 degrees. The spikes are not straight lines because of 

the secondary moment Mzz which, in turn, is related to the asymmetry of the cross 

section. The ends of the spikes represent the conventional failure of the cross section. 

 

In addition, figure 9.2.5 shows the results for each analysis as scattered data. The 

analysis took place with an initial curvature step of 1.0E-06 and a maximum axial load 

error of 1N. The algorithm automatically decreases the curvature step if the new 

curvature cannot be applied; therefore the scattered data become increasingly dense near 

the conventional failure i.e. the contour itself. 

 

Finally, figure 9.2.6 shows the complete conventional failure surface. 

 

 

9.3 Example 3 

 

In this example, the versatility of the proposed algorithm is demonstrated. The task is to 

check the maximum bending moment capacity of a bolted connection of two circular 

tubes of diameter/width 1520/22mm and 1400/12.7mm respectively. The connection is 

implemented by means of two circular flanges and 24 bolts arranged in circle. The 

flanges are reinforced externally by dense out – of – plane triangular steel elements, as 

shown in the figures. 

 



 16

 
 

Fig. 9.3.1. Plan view of the proposed connection. 

 

 
 

Fig. 9.3.2. 3d view of the proposed connection. 

 

 

Bottom tube, external diameter 1520mm 

Bottom tube, thickness 22mm 

Top tube, external diameter 1400mm 

Top tube, thickness 12.7 

Flange, external diameter 1800mm 

Flange, internal diameter 1200mm 

Flange, thickness 25mm 

Steel grade FE360 
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Number of bolts 24 

Bolt size M27 

Bolt quality 8.8 

Bolts arrangement, circle diameter 1660mm 

Bolts hole, circle diameter 33mm (3mm tolerance) 

Axial load (compressive) 325kN 

 

Table 9.3.1. Properties. 

 

We assume that the flanges are rigid by virtue of the triangular steel elements. However, 

the rigidity does not extend to the inner circle of the two flanges; we assume that the 

effective rigid ring has a width of 187mm, as shown in fig. 9.3.3. 

 

 
 

Fig. 9.3.3. Section of the proposed connection. 

 

Two materials are now defined: the flanges (steel grade Fe360) behave linearly in 

compression up to yield strength i.e. 235 213.636
1.10

MPa MPa= ; however they do not 

exhibit tensile strength (fig. 9.3.4). We expect the flanges not to yield i.e. the failure 

should occur because of the bolts. 
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Fig. 9.3.4. Flange material in myBiAxial. 

 

We assume that the bolts (quality 8.8) exhibit a bilinear behaviour. The first linear 

segment extends in tension up to yield strength i.e. 640 512
1.25

MPa MPa= ; the second 

linear segment extends up to ultimate strength defined by Eurocode 3, i.e. 

8000.9 576
1.25

MPa MPa⋅ = ; however they do not exhibit compressive strength (fig. 

9.3.5). 

 
 

Fig. 9.3.5. Bolt material in myBiAxial. 

 

Young modulus is taken equal to 200GPa  for all cases. Of course, the material 

properties may be defined otherwise and may also include parabolic segments, subject 

to the user’s needs or assumptions. 
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Fig. 9.3.6. Example 3 in my BiAxial. 

 

For an axial (compressive) load of 325
Xc

N kN= , the algorithm yields the following 

results: curvature 66.223 10k
−= ⋅ , strain at the origin 34.751 10

c
ε −= ⋅ , ultimate bending 

moment at failure 6466.160
Yc

M kNm= . The minimum strain for the flanges is 

4

min, 8.493 10flangesε −= − ⋅ ; therefore, the flanges do not yield, as assumed from the 

beginning. The failure occurs because of the outermost bolt, which reaches the 

maximum strain of max, 0.010
bolts

ε = + . 

 

Based on these data, the stress solids were created using CAD software (fig. 9.3.7). The 

results are summarized in table 9.3.2; the sum of the volume of all stress solids is equal 

to the axial load and the sum of all moments is equal to the result obtained from the 

proposed algorithm. 
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Fig. 9.3.7. Stress solids with CAD software. 

 

Element 
Volume  

(or Force, kN) 

Yc Coordinate of 

Centroid (mm) 

Bending Moment 

MYc (kNm) 

Flange -5876.256622 -842.4518 4950.462969

Bolts #11 (x 2) 63.7177013 -717.782 -45.73541907

Bolts #10 (x 2) 251.6976392 -586.6406 -147.6560541

Bolts #9 (x 2) 496.6778638 -414.8693 -206.0563977

Bolts #8 (x 2) 594.7123633 -214.8151 -127.7531958

Bolts #7 (x 2) 607.8800651 0 0

Bolts #6 (x 2) 621.0477669 214.8243 133.4161518

Bolts #5 (x 2) 633.3181116 415.0044 262.8298029

Bolts #4 (x 2) 643.8548955 586.903 377.8803697

Bolts #3 (x 2) 651.9400541 718.8054 468.6180314

Bolts #2 (x 2) 657.0225973 801.7227 526.7499307

Bolt #1 (x 1) 329.378079 830.0042 273.385189

Sums : -325.0094853   6466.141378

 

Table 9.3.2. Results obtained from CAD software. 

 

As expected, the interaction curve, shown in figure 9.3.8, is symmetrical. Note that 

since the secondary moment 
z

M  is zero at all times, the paths of all analyses are 

straight lines. 
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Fig. 9.3.8. Interaction curve for compressive axial load Nx = 325kN. 

 

 

9.4 Example 4 

 

In this example, the task is to calculate the maximum bending moment capacity of a 

rigid footing (fig. 9.4.1.). We assume that the footing is placed over sand modeled with 

independent springs (Winkler); failure occurs when stress exceeds a predefined 

maximum value. 

 

 

 

 

(a) (b) 

  

Fig. 9.4.1. Rigid footing (distances in m) (a) Plan view (b) 3D view 

 

Rigid footing, length 8.00m 

Rigid footing, width 4.00mm 

Axial load (compressive) 1300kN 
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Sand, k 20KPa / mm 

Sand, maximum stress 250KPa 

 

Table 9.4.1. Properties. 

 

We assume that sand behaves linearly in compression up to a maximum stress of 

250KPa  with a subgrade modulus 20
s

KPak
mm

=  (maximum settlement is 12.5mm ); 

also, it does not exhibit tensile strength (fig. 9.3.2). Note that linear behavior is not 

obligatory; the algorithm can handle parabolic segments as well as linear segments. 

Also, in this case, the stresses are expressed with respect to settlement instead of strain. 

 

 
 

Fig. 9.4.2. Sand material in myBiAxial. 

 

For an axial (compressive) load of 1300
Xc

N kN= , the algorithm yields the following 

results: curvature 4.807678k = , precipitation at the origin 6.730731mm
c
ε = , ultimate 

bending moment at failure 4073.331
Yc

M kNm= . The failure occurs because the sand 

reaches the maximum stress capacity of 250KPa (fig. 9.4.3) 

 

 
 

Fig. 9.4.3. Stress distribution. 

 

The results are easily verifiable (eq. 9.4.1): 
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1
250 2.60 4.00 1300

2

2
1300 1.40 2.60 4073.333

3

N KPa m m kN

M kN m m kNm

= ⋅ ⋅ ⋅ =

 = ⋅ + ⋅ = 
 

 (9.4.1) 

 

As a step further, we may want to restrict the length of the ineffective area of the 

footing. This is achieved easily by applying a restriction similar to that of “Point C” of 

Eurocode 2, which is described in Example 1. For example, we demand that the 

settlement at distance 1 2 h⋅  from the most compressed point i.e. at the middle of the 

footing, to be less than or equal to zero. In this way, more than half of the footing is 

always in contact with the sand. In this case and for the same axial (compressive) load 

of 1300
Xc

N kN= , the algorithm yields the following results: curvature 2.031k = , 

precipitation at the origin 0.00mm
c
ε = , ultimate bending moment at failure 

3466.667
Yc

M kNm= . 

 

 
 

Fig. 9.4.4. Stress distribution. 

 

The results are easily verifiable (eq. 9.4.2): 

 

 

1
162.5 4.00 4.00 1300

2

2
1300 4.00 3466.666

3

N KPa m m kN

M kN m kNm

= ⋅ ⋅ ⋅ =

 = ⋅ ⋅ = 
 

 (9.4.2) 

 

The complete interaction curve is shown in figure 9.4.5.  
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Fig. 9.4.5. Interaction curve for compressive axial load N = 1300kN. 
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